
Proceedings of ALGORITMY 2012
pp. 132–140

PARALLEL ONE-SIDED BLOCK-JACOBI SVD ALGORITHM∗

MARTIN BEČKA†, GABRIEL OKŠA‡, AND MARIÁN VAJTERŠIC§

Abstract. A new dynamic ordering is presented for the parallel one-sided block Jacobi SVD algorithm. Simi-
larly to the two-sided variant, which has been analyzed and implemented in last 10 years, the dynamic ordering takes
into account the actual status of a matrix—this time of its block columns with respect to their mutual orthogonality.
Using p processors, in each parallel iteration step the p mostly inclined pairs of block columns are made orthogonal,
whereby their inclination is measured by an estimation of principal angles between subspaces generated by those
block columns. It is shown that principal angles can be estimated using a set of parallel Lanczos processes applied
to special Wielandt-Jordan matrices. Only a limited number of iteration steps in each Lanczos process is needed for
estimating a small number of smallest principal angles. Numerical experiments show that the proposed new parallel
dynamic ordering can substantially decrease the number of parallel iteration steps needed for the convergence when
compared to a parallel cyclic ordering. However, its more scalable implementation is desirable because currently it
occupies a relatively high portion of the total parallel execution time.

Key words. Dynamic ordering, one-sided block-Jacobi method, Message Passing Interface

AMS subject classifications. 15A18, 15A23, 68W10

1. Background. This section contains a very brief introduction into the mathematical
background behind the Singular Value Decomposition (SVD) of a matrix. Full SVD theory
can be found in many excellent books, e.g. [8, 13, 24]. Afterwards, some serial algorithms for
the SVD computation, other than the Jacobi method, are briefly mentioned. We concentrate
on dense matrices, so some projection methods that are well-suited for sparse matrices are
omitted.

In what follows, AH denotes the Hermitian operation over the elements of matrix A, i.e.,
their complex conjugation and transposition. Further, ‖A‖F and ‖A‖2 are the Frobenius and
spectral norms of matrix A, respectively.

1.1. Singular value decomposition. The SVD of a complex matrix A of size m × n,
(m≥ n), is defined by

A = UΣV H , (1.1)

where U and V are unitary matrices of orders m and n, respectively, and Σ is an m× n
diagonal matrix. The real, nonnegative diagonal elements σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 of Σ are
the singular values of A, and the columns of U and V are the left and right singular vectors,
respectively. When m > n, the matrix Σ contains the zero block of size (m− n)× n at the
bottom.

The decomposition A = UΣV H can be also written as AV = UΣ or Avi = σiui for i =
1,2, . . . ,n. The alternative way of saying the same thing is AHU = V ΣH or AHui = σivi for

∗The authors were supported by the VEGA grant no. 2/0003/11 from the Scientific Grant Agency of the Ministry
of Education and Slovak Academy of Sciences, Slovakia.

†Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Republic,
(Martin.Becka@savba.sk).

‡Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Republic,
(Gabriel.Oksa@savba.sk).

§Department of Computer Sciences, University of Salzburg, Salzburg, Austria, and Mathematical Institute, De-
partment of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Republic, (marian@cosy.sbg.ac.at).

132



PARALLEL ONE-SIDED BLOCK-JACOBI SVD ALGORITHM 133

i = 1,2, . . . ,n and AHui = 0 for i = n+1, . . . ,m. When m > n, the so called thin (or economy-
sized) SVD is often computed in the form A = UnΣnV H , where Un = [u1,u2, . . . ,un] (i.e., only
first n left singular vectors are computed), and Σn = diag(σ1, . . . ,σn).

If rank(A) = r with r < n then last n− r singular values are zero and A = UrΣrV H
r where

Vr = [v1,v2, . . . ,vr]. This is the so-called compact SVD of A where only first r left and right
singular vectors play a role.

Taking only first t, t < r, left and right singular vectors and singular values, one obtains
the rank-t approximation At = UtΣtV H

t , which is called the rank-t truncated (partial) SVD of
A. Among all rank-t matrices B, B = At is the unique minimizer of ‖A−B‖F . The truncated
SVD is much smaller to store and cheaper to compute than the compact SVD when t� r and
it is the most often form of the SVD in applications where the small singular values are of no
interest to the user (e.g. in signal and image filtration, data retrieval computations, etc.).

2. One-sided block-Jacobi SVD algorithm. The one-sided block-Jacobi SVD algo-
rithm is suited for the SVD computation of a general complex matrix A of order m×n, m≥ n.
However, we will restrict ourselves to real matrices with obvious modifications in the com-
plex case.

We start with the block-column partitioning of A in the form

A = [A1,A2, . . . ,A`],

where the width of Ai is ni, 1≤ i≤ `, so that n1 +n2 + · · ·+n` = n.
The serial algorithm can be written as an iterative process:

A(0) = A, V (0) = In,

A(k+1) = A(k)U (k), V (k+1) = V (k)U (k), k ≥ 0. (2.1)

Here the n×n orthogonal matrix U (k) is the so-called block rotation of the form

U (k) =


I

U (k)
ii U (k)

i j
I

U (k)
ji U (k)

j j
I

 , (2.2)

where the unidentified matrix blocks are zero. The purpose of matrix multiplication A(k)U (k)

in (2.1) is to mutually orthogonalize the columns between column-blocks i and j of A(k).
The matrix blocks U (k)

ii and U (k)
j j are square of order ni and n j, respectively, while the first,

middle and last identity matrix is of order ∑
i−1
s=1 ns, ∑

j−1
s=i+1 ns and ∑

r
s= j+1 ns, respectively. The

orthogonal matrix

Û (k) =

(
U (k)

ii U (k)
i j

U (k)
ji U (k)

j j

)
(2.3)

of order ni + n j is called the pivot submatrix of U (k) at step k. During the iterative pro-
cess (2.1), two index functions are defined: i = i(k), j = j(k) whereby 1 ≤ i < j ≤ r.
At each step k, the pivot pair (i, j) is chosen according to a given pivot strategy that can
be identified with a function F : {0,1, . . .} → Pr = {(l,m) : 1 ≤ l < m ≤ r}. If O =
{(l1,m1),(l2,m2), . . . ,(lN(`),mN(`))} is some ordering of P` with N(`) = `(`− 1)/2, then



134 M. BEČKA, G. OKŠA AND M. VAJTERŠIC

the cyclic strategy is defined by:

If k ≡ `−1 mod N(`) then (i(k), j(k)) = (ls,ms) for 1≤ s≤ N(`).

The most common cyclic strategies are the row-cyclic one and the column-cyclic one, where
the orderings are given row-wise and column-wise, respectively, with regard to the upper
triangle of A. The first N(`) iterations constitute the first sweep. When the first sweep is
completed, the pivot pairs (i, j) are repeated during the second sweep, and so on, up to the
convergence of the entire algorithm.

Notice that in (2.1) only the matrix of right singular vectors V (k) is iteratively computed
by orthogonal updates. If the process ends at iteration t, say, then A(t) has mutually highly
orthogonal columns. Their norms are the singular values of A, and the normalized columns
(with unit 2-norm) constitute the matrix of left singular vectors.

The parallel version of the one-sided block-Jacobi SVD algorithm implemented on p
processors with the blocking factor ` = 2p is given below.

Parallel one-sided block-Jacobi SVD algorithm
1: V = In, ` = 2∗ p
2: . each processor has 2 block columns of A : AL and AR

3: G =
(

GLL GLR
GT

LR GRR

)
=
(

AT
L AL AT

L AR
AT

RAL AT
RAR

)
4: . global convergence criterion with a constant ε , 0 < ε � 1
5: while (F(A, `)≥ ε) do
6: . local convergence criterion with a constant δ , 0 < δ � 1
7: if (F(G, `)≥ δ ) then
8: . diagonalization of G
9: EVD(G,X)

10: . update of block columns
11: (AL,AR) = (AL,AR)∗X
12: (VL,VR) = (VL,VR)∗X
13: end if
14: . parallel ordering–choice of p independent pairs (i, j) of block columns
15: ReOrderingComp(p)
16: Send-Receive(Ak,Vk,Gkk), where k is either L or R
17: end while
18: svL : square roots of diagonal elements of GLL
19: svR : square roots of diagonal elements of GRR
20: . two block columns of left singular vectors
21: UL = AL ∗diag(1/svL), UR = AR ∗diag(1/svR)

Note that the diagonalization of the auxiliary matrix G is equivalent to the mutual orthogo-
nalization of block columns AL and AR of matrix A. Some parallel ordering is required in the
procedure ReOrderingComp that defines p independent pairs of block columns of A which
are simultaneously mutually orthogonalized in a given parallel iteration step by computing
p eigenvalue decompositions EVD(G,X) of p auxiliary matrices G. Up to now, some cyclic
(static) parallel ordering (see [1, 2]) has been used. In next subsection, we describe a new dy-
namic ordering that takes into account the actual status of matrix A with respect to the mutual
inclination of its block columns.



PARALLEL ONE-SIDED BLOCK-JACOBI SVD ALGORITHM 135

2.1. Dynamic ordering. A big disadvantage of any fixed ordering is the fact that the
actual status of orthogonality is usually checked only after a whole sweep and one has no
information about the quality of this process at the beginning of a parallel iteration step. In
other words, in a given parallel iteration step one can try to orthogonalize some mutually
‘almost orthogonal’ block columns while neglecting pairs that are far from being orthogonal.
It is clear, at least intuitively, that orthogonalizing block columns with small mutual angles
first would mean to eliminate the ‘worst’ pairs first, and this would mean (hopefully) the
faster convergence of the whole algorithm as compared with any fixed, cyclic ordering.

Hence, the main question is how to choose p pairs of block columns with smallest prin-
cipal angles among all `(`− 1)/2 = p(2p− 1) pairs. The obvious, but very naive way is to
compute, for each column block X , all possible matrix products XTY , then to compute the
SVD of XTY and look at the singular values, which are the cosines of acute principal angles
(the smaller angle, the larger cosine). When the block columns are distributed in processors,
to compute matrix products XTY for each two different block columns X and Y means to
move block columns across processors, i.e., it leads to heavy communication at the begin-
ning of each parallel iteration step. Besides that, one needs to compute many matrix products
and SVDs. Moreover, when p pairs of column blocks with smallest principal angles are
chosen, they must meet in processors, which means yet another communication.

Our idea is different. After the first parallel iteration step, the block columns inside
contain mutually orthogonal columns. Suppose that each processor contains exactly two
block columns (this is not substantial for the following discussion). Moreover, suppose that
k ≡ n/2p columns in each block column are normalized so that each has the unit Euclidean
norm. Hence, each column block is the orthonormal basis of the k-dimensional subspace
which is spanned by the column vectors of a given block column.

Consider now the block column partitioning A = [A1,A2, . . . ,A`] of matrix A. Take two
block columns Ai, A j which should be orthogonalized in a given parallel iteration step. Hav-
ing p processors, our goal is to choose p pairs of those block columns that are maximally
inclined to each other, i.e., their mutual position differs maximally from the orthogonal one.
Mathematically, this goal can be described by using the notion of principal angles between
two k-dimensional subspaces spanned by two block columns Ai, A j. Since Ai and A j are or-
thonormal bases of two subspaces with the equal dimension, the cosines of principal angles
are defined as the singular values of the matrix XTY . Let σ1≥ σ2≥ . . .≥ σk be k singular val-
ues of the k×k matrix AT

i A j. Then the principal angles θ1 ≤ θ2 ≤ . . .≤ θk, θi ∈ [0,π/2], 1≤
i≤ k, are defined as:

θi = arccos(σi), 1≤ i≤ k. (2.4)

Since Ai and A j have orthonormal columns, all singular values of AT
i A j are in the interval

[0,1], so that the relation (2.4) is well defined.
We are interested in, say, L smallest principal angles, i.e., in L largest cosines (largest

singular values) σ1 ≥ σ2 ≥ ·· · ≥ σL. When σ1 = 0, then all σi = 0, 2≤ i≤ k, and two block
columns X and Y are perfectly orthogonal; we do not need to orthogonalize them explicitly.
On the other hand, when all σk are significantly greater than 0, column blocks X and Y are
certainly far from the mutual orthogonality.

However, this approach means that we must explicitly compute the matrix AT
i A j. When

two block columns Ai and A j are placed in two different processors, we can either compute
this matrix product in parallel (but for each pair of block columns), or store both blocks in one
processor and compute the matrix product locally using the LAPACK library. Afterwards,
we must compute (or at least somehow estimate) the largest L singular values and afterwards
compute some function of them (e.g., the sum of their squares) to get our weight wi j for



136 M. BEČKA, G. OKŠA AND M. VAJTERŠIC

the maximal perfect matching. In both cases we need again too much communication at the
beginning of each parallel iteration step to construct the actual parallel ordering for that step.

To estimate L largest singular value of the k× k matrix AT
i A j, we suggest to use the

Lanczos process applied to the symmetric Jordan-Wielandt matrix C,

C ≡
(

0 AT
i A j

AT
j Ai 0

)
. (2.5)

It is well known that the eigenvalues of the 2k×2k matrix C are ±σ1,±σ2, . . . ,±σk. Notice
that there are k pairs of eigenvalues with the same absolute value.

It follows from the theory of Krylov space methods that the Lanzcos algorithm applied to
a symmetric matrix is the good iterative method for estimating its largest (in absolute value)
eigenvalues. This algorithm, applied to the symmetric Jordan-Wielandt matrix C, is listed
below for a fixed number of iteration steps L.

Lanczos algorithm for the symmetric Jordan-Wielandt matrix C

1: Choose integer L = 2s and the vector x0 of length 2k, and compute
β1 = ‖x0‖; v1 = x0/β

2: for s = 1 to L do
3: ws = Cvs
4: if (s 6= 1) then
5: ws = ws−βsvs−1
6: end if
7: αs = wT

s vs
8: ws = ws−αsvs
9: βs+1 = ‖ws‖

10: if (βs+1 6= 0) then
11: vs+1 = ws/βs+1
12: end if
13: if (βs+1 == 0) then
14: s = L
15: end if
16: end for
17: Set: TL = tridiag(βi,αi,βi+1)
18: Compute the Frobenius norm of TL.

Steps 2–9 constitute an adaptation of the Arnoldi method for a symmetric matrix. Due to the
special structure of C (see Eq. (2.5)), the matrix-vector product in step 2 is applied in two
substeps: w1

s = AT
i A jv1

s , w2
s = AT

j Aiv2
s , where vs = (v1T

s ,v2T
s )T and ws = (w1T

s ,w2T
s )T .

The result is the orthonormal basis of the Krylov subspace KL(C,x0) formed by vectors
vs, 1 ≤ s ≤ L. Besides that, the coefficients αs and βs are computed that are stored in the
symmetric, tri-diagonal matrix TL (step 10).

In our application, the orthonormal vectors vs are not important (they are used, for ex-
ample, in the solution of a linear system of equations). What is most important, is the square
of the Frobenius norm of TL written in terms of its eigenvalues ωs, 1≤ s≤ L (they are known
as Ritz values):

‖TL‖2
F =

L

∑
s=1

ω
2
s .



PARALLEL ONE-SIDED BLOCK-JACOBI SVD ALGORITHM 137

As already mentioned, the L Ritz values approximate reasonably well L largest (in the ab-
solute value) eigenvalues λs of the Jordan-Wielandt matrix C. However, in our application,
there are exactly two eigenvalues of C with the same absolute value (with opposite signs) and
they are related to the squares of singular values of AT

i A j. Therefore,

‖Tm‖2
F =

L

∑
s=1

ω
2
s ≈

L

∑
s=1

λ
2
s = 2

L/2

∑
s=1

σ
2
s = 2

L/2

∑
s=1

cos2(θs),

i.e., the Frobenius norm of TL can be used as the (good) approximation for the sum of
L/2 largest cosines defining L/2 smallest principal angles between subspaces span(Ai) and
span(A j). In other words, we have found an easily computable weight wi j for the maximum
perfect matching in the one-sided block-Jacobi method. We stress that we do not need to
compute the Ritz values (i.e., the EVD of TL) - the Frobenius norm squared is enough.

Moreover, note that in our application TL is not needed in its explicit form. All that is
needed is the square of its Frobenius norm. Since

wi j = ‖TL‖2
F =

L

∑
s=1

α
2
s +2

L

∑
s=2

β
2
s ,

‖TL‖2
F can be updated recursively immediately after computing αs and βs+1 in the sth iteration

step of the Lanczos algorithm.
Note that the weight wi j takes into account the actual mutual position of two subspaces

span(Ai) and span(A j). Therefore, we can simply choose the ‘worst’ p pairs of column
blocks for their parallel orthogonalization by choosing the pairs with highest values of wi j.
This is an analogy to the two-sided dynamic ordering where the actual Frobenius norm of
the off-diagonal blocks was taken into account. Therefore, the above described ordering can
be defined as the one-sided dynamic ordering. To choose the p ‘worst’ block columns for
the parallel orthogonalization, the same maximum-weight perfect matching algorithm on the
complete graph with r vertices and weights wi j can be used as in the two-sided case (see [3]).

We have just described, how we can quite cheaply compute the weight wi j that is the
function of L/2 (estimated) largest cosines of principal angles between subspaces span(Ai)
and span(A j). The larger the weight, the lower the degree of mutual orthogonality between
these two subspaces. However, at the beginning of each parallel iteration step we have to
compute those weights for all pairs of block columns of matrix A. Next we describe how
this computation can be done in parallel without sending/receiving whole block columns and
without computing explicitly the matrix products AT

i A j.
In a parallel environment with p processors and the blocking factor ` = 2p, these com-

putations must be done for all 2(p−1) Lanczos processes for which each processor Pj is the
master and this work is serialized inside processors. Each processor stores the information
about two block columns that it currently overviews stores, and about all Lanczos processes
for which it serves as the master. Therefore, each processor can read/write from/to the data
structure the data/results of its own computations for all Lanczos processes for which it is the
master (matrix-vector products, updates of Frobenius norms). To communicate data between
all processors, the MPI collective communication ALLTOALL is used. Two such communica-
tions are needed per one parallel iteration step, i.e., together 2L collective communications
are needed. These communications serve also like the global synchronization steps in the
whole computation.

At the end of computation with Lanczos processes, all processors contain all weights wi j
for all block column pairs (excluding those residing in p processors), which are simply the



138 M. BEČKA, G. OKŠA AND M. VAJTERŠIC

squares of Frobenius norms of all matrices TL produced in all Lanczos processes. Therefore,
each processor can compute the maximum-weight perfect matching and the resulting parallel
ordering; the algorithm is the same as for the parallel two-sided block-Jacobi method (see
[3]). For transferring the chosen pairs in processors, the optimal parallel scheduling is used
(see [4]).

The global stopping criterion of the iteration process is based on the maximum value
of currently computed weights wi j. When using a computer with machine precision ε , the
convergence is reached when

max
i, j

wi j < nLε, (2.6)

where n is the matrix order and L is the number of steps in Lanczos processes. In other
words, the computation is finished when the cosines of L/2 largest principal angles between
all column blocks are ’sufficiently’ small. The local stopping criterion is similar: A given
pair (i, j) of block columns is not orthogonalized when

wi j < nLε. (2.7)

In following tables, we present first numerical results comparing the behavior of the paral-
lel one-sided block-Jacobi SVD algorithm with dynamic ordering with two different cyclic
(static) orderings, static1 (the odd-even ordering CO(0), see [1]) and static2 (the robin-
round ordering DO(0), see [1]). Computations were performed on the Woodcrest Cluster
at Nuernberg-Erlangen University for random matrices with six various distributions of SVs
defined by the variable mode. mode = 1 corresponds to a multiple minimal singular value,
mode = 2 to a multiple maximal SV, mode = 3 describes a geometric sequence of SVs,
mode = 4 defines an arithmetic sequence of SVs, mode = 5 defines the SVs as random num-
bers such that their logarithms are uniformly distributed, and, finally, mode = 6 sets the SVs
to random numbers from the same distribution as the rest of a matrix (i.e., in our case they
were normally distributed).

Table 2.1 contains the results for the SVD of well-conditioned matrices (with the con-
dition number κ = 101) of order n = 4000 with a variable number of Lanczos steps L. For
both static cyclic orderings, the number of sweeps is given by nit/15 where nit is the number
of parallel iterations needed for the convergence of the whole algorithm. The total parallel
execution time Tp is given in seconds. For mode= 1 and 2, our dynamic ordering needs about
five times less parallel iterations than a static ordering. For harder cases, with mode ≥ 3, the
ratio is about 2− 3. But notice, that the decrease of Tp is much less. The dynamic ordering
is about 2.5 times faster for mode = 1 and 2, but only about 1.5 faster for other modes. Also,
Tp increases with L, the number of Lanczos steps, suggesting that the estimation of weights
at the beginning of each parallel iteration step is quite time-demanding.

This conclusion is confirmed in Table 2.2 with results for ill-conditioned matrices (with
κ = 108) where the last row depicts the average time TWC of weight computations for a
given number of Lanzcos steps for mode = 5. With respect to nit, the situation is similar to
well-conditioned matrices. However, it is clearly seen that our current implementation of the
dynamic ordering is not very efficient. For example, in the case of L = 6 Lanczos steps the
time spent in the computation of weights is 60 per cent of Tp. If this portion of algorithm
were faster, one would substantially decrease Tp and be even more efficient as compared to
the static ordering.

3. Conclusions. Recent progress in the parallel block-Jacobi SVD algorithm has been
achieved by applying two ideas: i) the new parallel dynamic ordering of subproblems, and ii)



PARALLEL ONE-SIDED BLOCK-JACOBI SVD ALGORITHM 139

TABLE 2.1
Performance for n = 4000, p = 8, κ = 101

mode L = 1 L = 2 L = 4 L = 6 static1 static2
1 nit 4 4 4 4 30 30

Tp [s] 5 6 9 11 13 13
2 nit 4 4 4 4 30 30

Tp [s] 5 6 9 11 13 12
3 nit 108 99 98 99 240 270

Tp [s] 225 234 292 354 354 390
4 nit 103 97 98 97 225 240

Tp [s] 212 228 289 345 327 354
5 nit 109 103 99 100 255 285

Tp [s] 230 242 293 360 367 409
6 nit 108 107 106 103 270 285

Tp [s] 226 252 315 371 395 420

TABLE 2.2
Performance for n = 4000, p = 8, κ = 108

mode L = 1 L = 2 L = 4 L = 6 static1 static2
2 nit 19 19 19 19 45 45

Tp [s] 21 26 38 50 25 24
3 nit 226 205 169 183 780 795

Tp [s] 515 535 552 696 1233 1252
4 nit 111 105 103 101 240 270

Tp [s] 225 241 303 358 347 390
5 nit 219 208 184 177 795 795

Tp [s] 501 538 597 688 1243 1266
TWC [s] 159 250 345 413

6 nit 219 208 184 177 795 795
Tp [s] 501 538 597 688 1243 1266

the matrix pre-processing by QR iterations. For the parallel two-sided block-Jacobi method,
these ideas were implemented and tested on various parallel platforms during last 10 years
and results were published in papers [3, 4, 5, 22].

In this paper, we present a new dynamic ordering of subproblems for the parallel one-
sided variant. First numerical results are quite promising, but a more efficient implementation
of the estimation of principal angles between any two block matrix columns is needed. In
other words, one should spend much less portion of the total parallel execution time in the
computation and distribution of weights for the dynamic ordering.

However, the new dynamic ordering alone can not make the parallel one-sided block-
Jacobi SVD algorithm competitive to the ScaLAPACK routine PDGESVD. Again, some sort of
matrix pre-processing has to be included similarly as it was the case in the two-sided variant
[22]. A concentration of the Frobenius norm near the main matrix diagonal is not enough.
It has to be coupled with a special ordering inside EVDs of 2×2 subproblems computed in
each processor within a given parallel iteration step (see [11, 12]). We plan to investigate and
implement these ideas in the near future.



140 M. BEČKA, G. OKŠA AND M. VAJTERŠIC

REFERENCES

[1] M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory systems: I. Hypercubes
and rings, Parallel Algorithms Appl. 13 (1999) 265–287.

[2] M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory systems: II. Meshes, Par-
allel Algorithms Appl. 14 (1999) 37–56.

[3] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel block-Jacobi SVD algorithm, Parallel
Computing 28 (2002) 243–262.

[4] M. Bečka and G. Okša, On variable blocking factor in a parallel dynamic block-Jacobi SVD algorithm,
Parallel Computing 28 (2003) 1153–1174.

[5] M. Bečka, G. Okša, M. Vajteršic and L. Grigori, On iterative QR pre-processing in the parallel block-Jacobi
SVD algorithm, Parallel Computing 36 (2010) 297–307.

[6] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci. Statist. Comp. 11
(1990) 873–912.

[7] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal. Appl. 13 (1992)
1204–1245.

[8] J. Demmel, Applied numerical linear algebra, First ed., SIAM, Philadelphia, 1997.
[9] Z. Drmač, Implementation of Jacobi rotations for accurate singular value computation in floating-point arith-

metic, SIAM J. Sci. Comp. 18 (1997) 1200–1222.
[10] Z. Drmač, A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algorithm, IMA

J. Numer. Anal. 19 (1999) 191–213.
[11] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: I., LAPACK Working Note 169,

August 2005.
[12] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: II., LAPACK Working Note 170,

August 2005.
[13] G. H. Golub and C. F. Van Loan, Matrix computations, Third ed., The Johns Hopkins University Press,

Baltimore, 1996.
[14] V. Hari and J. Matejaš, Accuracy of the Kogbetliantz method, preprint, University of Zagreb, 2005.
[15] V. Hari and V. Zadelj-Martič, Parallelizing Kogbetliantz method, accepted for publication at Int. Conf. on

Numerical Analysis and Scientific Computation, Rhodos, Greece, September 2006.
[16] V. Hari, Accelerating the SVD block-Jacobi method, Computing 75 (2005) 27–53.
[17] V. Hari, Convergence of a block-oriented quasi-cyclic Jacobi method, accepted for publication in SIAM J.

Matrix Anal. Appl.
[18] M. R. Hestenes, Inversion of matrices by biorthogonalization and related results, J. SIAM 6 (1958) 51–90.
[19] N. J. Higham, Accuracy and stability of numerical algorithms, First ed., SIAM, Philadelphia, 1996.
[20] C. G. J. Jacobi, Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichun-

gen numerisch aufzulösen, Crelle’s Journal für Reine und Angewandte Mathematik 30 (1846) 51–95.
[21] MPI Programming Standard 2.0, http://www.mcs.anl.gov
[22] G. Okša and M. Vajteršic, Efficient preprocessing in the parallel block-Jacobi SVD algorithm, Parallel Com-

puting 31 (2005) 166–176.
[23] P. M. de Rijk, A one-sided Jacobi algorithm for computing the singular value decomposition on a vector

computer, SIAM J. Sci. Stat. Comp. 10 (1989) 359–371.
[24] G. W. Stewart, Matrix algorithms, Vol. II: Eigensystems, First ed., SIAM, Philadelphia, 2001.
[25] K. Veselić and V. Hari, A note on a one-sided Jacobi algorithm, Numer. Math. 56 (1989) 627-633.


