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AGGREGATION SCHEMES FOR K-CYCLE AMG

MAXIMILIAN EMANS∗

Abstract. We examine different aggregation schemes for k-cycle AMG. With real-life examples
from computational fluid dynamics, we confirm that using aggregates of mainly four nodes results
in very efficient methods. However, we show also that the k-cycle aggregation AMG in its known
form becomes even more efficient, if simpler aggregation schemes skipping the explicit calculation of
intermediate coarse-grid operators are employed.
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1. Introduction. Algebraic multigrid (AMG) based methods reflect the level
of the art for sparse linear solvers in many areas of scientific computing, e.g. in com-
putational fluid dynamics (CFD). The most recent development in the field of AMG
solvers is the use of Krylov-accelerated aggregation methods (k-cycle methods), where
we consider the paper of Notay [10] as a milestone. In previous examinations it could
be shown that the performance of these methods is either equivalent or superior to
that of conventional AMG, see Emans [3, 5]. Both, the adaptive preconditioning, and
the Krylov-acceleration contribute to the increased efficiency of this class of methods.

In his original paper, Notay [10] suggests a particular aggregation technique that
is efficient, easy to implement, and robust, also for parallel calculations. It is based on
a pairwise aggregation. But in computational fluid dynamics, the methods of choice
for the AMG solvers use a different aggregation strategy that allows for aggregates
of different sizes, see e.g. Darwish et al. [1] or Weiss et al. [12]. In the present
paper we compare systematically different aggregation techniques, starting from the
structure of the multigrid operators that are obtained by different methods, continuing
with aspects like memory requirement, and finishing with a performance analysis of
benchmarks in CFD from engineering applications.

2. Aggregation AMG. Within a Krylov method, the AMG algorithm shall be
applied as a preconditioner to a symmetric positive definite or semi-definite system
which we denote as

A~x = ~b (2.1)

where A ∈ Rn×n is regular, ~b ∈ Rn is some right-hand side vector and ~x ∈ Rn the
solution; n is the number of unknowns.

Any variant of the AMG algorithm requires the definition of a grid hierarchy with
lmax levels Al ∈ Rnl×nl (l = 1, ..., lmax) with system size nl where nl+1 < nl holds
for l = 1, ..., lmax − 1 and A1 = A as well as n1 = n. As it is common practice in
algebraic multigrid, the coarse-grid operators are defined, starting on the finest grid,
recursively by

Al+1 = PT
l AlPl (l = 1, ..., lmax − 1). (2.2)
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where the prolongation operator Pl has to be determined for each level l while the
restriction operator is PT

l . It is the choice of the coarse-grid selection scheme that
determines the elements of all Pl and consequently the entire grid hierarchy. The
determination of the elements of Pl for all levels and the computation of the operators
Al (l = 2, ..., lmax) are referred to as setup phase of AMG.

2.1. Aggregation techniques. The class of aggregation methods we consider
here splits the number of nodes on the fine grid into disjoint sets of nodes, the so-
called aggregates that act as nodes on the coarse grid. The mapping from the coarse
grid to the fine grid is than achieved by simply assigning the coarse-grid value of the
aggregate to all the fine-grid nodes belonging to this aggregate. This corresponds to
a constant interpolation; the consequence is that there is only one non-zero entry in
each row of Pl with the value one such that the evaluation of eqn. (2.2) simplifies to
an addition of rows of the fine-grid operator. This methods are particularly simple.
To distinguish them from the Smoothed Aggregation method, that further refine the
prolongation operator, see Vaněk et al. [11], we refer to this aggregation technique as
plain aggregation.

2.1.1. Pairwise aggregation. The first step of the double-pairwise aggregation
that has been suggested by Notay [10] to be used in k-cycle AMG, is the aggregation
of the set of nodes into aggregates of pairs of nodes. For this Algorithm 1 is used.

For the pairwise aggregation that we refer to as algorithm NP2, the output of
Algorithm 1, i.e. the aggregates Gi (i = 1, ..., nl+1), is used to define the prolongation
operator Pl. The calculation of the elements of the coarse-grid matrix Al+1 = PT

l AlPl

with eqn. (2.2) is implemented as the addition of two rows in two steps: First, the
rows are extracted from the matrix storage structure in a way that the corresponding
elements of the data array are put in a single array and the row pointers in another
array of the same size. Second, after the column pointers are replaced by the indices of

Algorithm 1 Pairwise aggregation (by Notay [10], simplified version)

Input: Matrix A = (aij) with n rows.
Output: Number of coarse variables g and aggregates Gi, i = 1, ..., g (such

that Gi ∩Gj = ∅ for i 6= j).
Initialisation: U =

{
i ∈ [1, n]|∃aik 6= 0 with i 6= k

}
∀i: Si = {j ∈ U \ {i} | aij < −0.25 ·maxk|aik|},
∀i: mi = | {j|i ∈ Sj} |,
g = 0.

Algorithm:
1: while U 6= ∅ do
2: select i ∈ U with minimal mi;
3: g ← g + 1
4: select j ∈ U such that aij = mink∈Uaik

5: if j ∈ Si: Gg = {i, j}, else Gg = {i}
6: U ← U \Gg

7: for all k ∈ Gg do
8: if l ∈ Sk: ml ← ml − 1
9: end for

10: end while
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the corresponding coarse-grid aggregates, both arrays have been sorted with respect
to the new column pointers where matrix elements with the same column pointer are
added. The parallel version of the method restricts the aggregates to nodes belonging
to the same parallel domain.

For the double-pairwise aggregation, the aggregates Gi (i = 1, ..., nl+1) are used
to define the intermediate prolongation operator Pl1. With this, the elements of the
corresponding intermediate coarse-grid matrix Al+1/2 = PT

l1AlPl1, are determined
exactly as in the pairwise aggregation. In order to obtain the matrix Al+1, the double-
pairwise aggregation applies the same procedure a second time, this time with input
Al+1/2 instead of Al for Algorithm 1 which gives rise to the prolongation operator
Pl2. Al+1 is calculated as Al+1 = PT

l2Al+1/2Pl2. The final prolongation operator is
formally Pl = Pl2Pl1. Since it contains only the information to which aggregate a
fine-grid node is assigned, it is sufficient to store it as an array of size nl carrying the
index of the coarse-grid node. The operators Al+1/2, Pl1, and Pl2 are discarded after
Al+1 has been calculated. We refer to this method as NP4.

While the double-pairwise aggregation mainly forms aggregates of four fine-grid
nodes, it is easily possible to extend the concept in such a way that a third pairwise ag-
gregation (of the pairs-of-pairs) is added. This way aggregates of up to eight nodes are
formed. The calculation of the coarse-grid operator requires the explicit calculation of
two intermediate coarse-grid operators Al+1/3 = PT

l1AlPl1 and Al+2/3 = PT
l2Al+1/3Pl2

where Pl2 is the prolongation operator constructed on Al+1/3; the final coarse-grid
operator is then Al+1 = PT

l3Al+2/3Pl3 where Pl3 is constructed on Al+2/3. The pro-
longation operator on level l is Pl = Pl3Pl2Pl1. The operators apart from Pl and Al

are discarded. We refer to this triple-pairwise aggregation method as NP8.

2.1.2. Plain aggregation. This algorithm tries to form larger aggregates by a
sort of greedy mechanism. In a first step it puts strongly connected neighbours into
aggregates while in two further steps it is attempted to form additional aggregates out
of the remaining unassigned nodes or to join them to existing ones, see Algorithm 2.
It follows closely the aggregation algorithm used by Vaněk et al. [11] with the essential
difference that we restrict the number of nodes per aggregate which gives rise to the
parameter γ of this algorithm. In lines 12 and 23 we allow twice the number of nodes
γ in order to avoid a large number of single-point aggregates. Usually only a few such
enlarged aggregates are formed. In parallel, only nodes assigned to the same process
are grouped into aggregates.

2.2. Multigrid cycling. Not long ago, Notay [10] has combined several ideas
of previous years into a efficient novel multigrid scheme which is referred to as k-
cycle. It has been shown in previous publications that the concept of this k-cycle
AMG is particularly well suited for the requirements of important applications such
as computational fluid dynamics, see e.g. Emans [3, 5]. Other than conventional
multigrid methods that obtain a coarse-grid correction by recursive application of the
multigrid method, the k-cycle employs a Krylov method on each level of the grid
hierarchy and uses the grid hierarchy for the preconditioning of this Krylov method.
Apart from the larger robustness of this scheme due to the additional Krylov method,
the major advantage of the k-cycle is that it is adaptive: Either one or two iterations
of the Krylov method on each grid level are done – comparable either to a v-cycle or a
w-cycle in conventional AMG. The k-cycle is used as a preconditioner for the flexible
conjugate gradient method, see Notay [9].

Although the aggregation variants discussed above can be combined with various
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Algorithm 2 Simple aggregation (see Vaněk et al. [11], limited number of nodes per
aggregate)

Input: Matrix A = (aij) with n rows,
nodes per aggregate γ,
connectivity threshold β

Output: Number of coarse variables g and aggregates Gi, i = 1, ..., g (such
that Gi ∩Gj = ∅ for i 6= j).

Initialisation: U =
{
i ∈ [1, n]|∃aik 6= 0 with i 6= k

}
∀i: Si =

{
j ∈ U \ {i} | aij < −β ·max(k)|aik|

}
,

g = 0.
Algorithm:

1: i=1
2: while U 6= ∅ and i ≤ n do
3: if Si 6= ∅: g ← g + 1
4: for all j ∈ Si do
5: if |Gg| < γ: Gg ← Gg ∪ {j}; U ← U \ {j}
6: end for
7: while i /∈ U and i < n: i← i+ 1
8: end while
9: i=1

10: while U 6= ∅ and i ≤ n do
11: while i /∈ U and i < n: i← i+ 1
12: J :=

{
j|∃h : j ∈ (Gh ∩ Si), |Gh| < 2 · γ

}
13: if J 6= ∅ then
14: select h such that k ∈ Gh and |aik| = maxk∈J |aik|
15: Gh ← Gh ∪ {i}; U ← U \ {i}
16: end if
17: end while
18: i=1
19: while U 6= ∅ and i ≤ n do
20: while i /∈ U and i < n: i← i+ 1
21: g ← g + 1
22: for all j ∈ (Si ∩ U) do
23: if |Gg| < 2 · γ : Gg ← Gg ∪ {j}; U ← U \ {j}
24: end for
25: end while

AMG components, we restrict ourselves for the purpose of this paper to the exami-
nation of k-cycle AMG with several of these aggregation variants. The smoother we
apply in our schemes is a symmetric Gauß-Seidel smoother with two pre-smoothing
sweeps and two post-smoothing sweeps. The parallel implementation relies on a do-
main decomposition; the values associated to nodes of external domains are exchanged
at once, i.e. for the affected connections a Jacobi-like smoothing takes place. The par-
allel coarse-grid problem is treated by an agglomeration scheme, for details see Emans
[4].



AGGREGATION FOR K-CYCLE AMG 145

3. Applications. In this section we will discuss the algorithmic and computa-
tional properties of different aggregation schemes that are particularly well suited for
the k-cycle AMG. These are, among the double-pairwise aggregation that is typically
used together with the k-cycle AMG, see Notay [10], the triple-pairwise aggregation
NP8, and plain aggregation schemes with a low limit of nodes per aggregate. In the
first part of this section we will examine the grid hierarchy that results from differ-
ent definitions of the prolongation operator. In the second part, we present results
of benchmarks consisting of several linear systems of two typical CFD applications,
focusing on computing time and convergence.

We apply the solvers within the framework of the CFD package FIRE(R) 2011,
developed and distributed by AVL GmbH, Graz. This software calculates an approxi-
mate solution of the Navier-Stokes equations. The spatial discretisation is a 2nd order
accurate finite volume scheme on unstructured meshes. The computationally most
expensive task within this scheme is the solution of the pressure-correction equation.
The matrix of this system is symmetric positive-definite for weakly compressible flow
and symmetric semi-definite for incompressible flows, see Emans [2]. For this system
the discussed AMG methods are employed. The problems we consider are real-world
problems that stem from engineering application of such a software. Since it would
require a too large amount of computational resources without bringing additional
information, we do not run the calculation until a final solution of the system is ob-
tained, but we stop the calculation after a certain number of SIMPLE iterations in
the case of steady problems or a certain number of time steps in the case of time-
dependent problems.

3.1. Algorithmic properties. The diagrams in Figure 3.1 show the maximum
and average number of non-zero matrix elements of some plain aggregation methods
with different γ and of the aggregation schemes derived from the pairwise aggregation.
The latter type of aggregation schemes (NP2, NP4, and NP8) generally leads to leaner
operators than the plain aggregation scheme with the corresponding γ. The reason
is that the plain aggregation leads to a certain number of aggregates not having
precisely γ nodes per aggregate. The pairwisely aggregating schemes, in contrast,
produce aggregates that contain almost exclusively 2, 4, or 8 fine-grid nodes per
aggregate, respectively. The fact that the pairwisely aggregating algorithms lead to
grid hierarchies with one level more than the plain aggregation with the same number
of nodes is due to presence of aggregates with more than 4 and 8 nodes per aggregate
in the splittings of A004 and A008, respectively.

The grid hierarchies are characterised by the grid complexity cg and the operator
complexity co. The grid complexity is defined by

cg :=
lmax∑
l=1

nl/n1 (3.1)

and the operator complexity by

co :=
lmax∑
l=1

ml/m1 (3.2)

where ml is the number of non-zero entries of the matrix on level l (l = 1, ..., lmax).
The grid complexity is a measure for the number of unknowns that needs to be re-
calculated during the multigrid cycle. With regard to the computational cost, the
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Fig. 3.1. Left: number of non-zero elements per matrix row on different levels of the grid
hierarchy obtained with different aggregation algorithms for problem 2, see section 3.2: maximum
aggregate sizes (solid lines), average aggregate sizes (dashed lines); right: grid and operator com-
plexity, memory requirement

operator complexity is more relevant since it measures roughly the cost (in terms of
both, elementary computational operations and memory requirement) of the multi-
grid cycle. However, we monitor the memory requirement also directly. In Figure 3.1
we show the grid complexity, the operator complexity, and the memory requirement
for selected coarsening schemes applied to the first linear system solved in problem
2. Those schemes that have very small aggregates have generally a relatively high
operator complexity, see the decreasing memory requirement for the pairwisely ag-
gregating schemes and the plain aggregation schemes. The schemes NP4 and A004
are similar in all three values. Comparing NP8 and A008, NP8 is more favourable in
terms of all three values.

3.2. Benchmarks. Problem 1 is a steady flow through the intake geometry of
an engine cylinder. The flow is driven by a pressure difference that is imposed directly
as a pair of boundary conditions. In this case, we consider the pressure-correction
equations of the first five iterations of the SIMPLE algorithm. Problem 2 is part of an
unsteady compressible full engine computation. In the period of time of the simulation
that we consider, the cylinder is loaded by fresh air. A prescribed mass flow, known
from experiments, flows into the cylinder while the piston starts to move downward
from its top position. The mass flow gives rise to a Dirichlet boundary condition for
the velocity. Besides this, only solid, but partially moving, wall boundary conditions
are involved. In this case three time steps are calculated; the accumulated number of
SIMPLE iterations is 88, i.e. 88 different linear systems are solved.

Table 3.1 gives an overview over the most important settings of the benchmark
problems. In both problems, a standard k-ε turbulence model, see Jones and Launder
[7], is added to the system of the Navier-Stokes equations. For both problems, the
initial guess for each linear system that is solved by our AMG algorithms in this
benchmark is the zero vector. The solver reduces the residual by a factor of 200 and
then terminates.

3.2.1. Convergence. Figure 3.2 shows the cumulative iteration counts for the
runs with selected aggregation schemes. The curves reveal that the difference in the
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Table 3.1
Overview over the calculation cases

problem 1: intakeport problem 2: cylinder
fluid air air
initial condition potential flow rest
boundary conditions wall, pressure velocity, wall
discretisation 0.7 mio cells 1.4 mio cells
number of systems 5 88
mesh: hex/tet/other 91.4 / 0.2 / 8.4 % 1.1 / 80.1 / 18.8 %

convergence rate, i.e. the number of iterations, of the methods with aggregation based
on the formation of pairs (NP4 and NP8) on the one side and the plain aggregation
schemes on the other side, is generally small. Moreover, not surprisingly, the conver-
gence is better if the number of nodes per aggregate is smaller.

Fig. 3.2. Cumulative iteration counts for problem 1 (left), for problem 2 (right)

Fig. 3.3. Cycling (average number of visits at the individual grids) for problem 1 (left), for
problem 2 (right)



148 M. EMANS

The substitution of NP4 by e.g. A004 in the k-cycle algorithm does not signif-
icantly worsen the global convergence in our problems, see Figure 3.2. It makes,
however, the adaptive cycling of the k-cycle more expensive. To show this, we have
plotted the averaged number of visits on each grid level l versus the grid level in
Figure 3.3. The data indicates that the adaptivity of the k-cycle can compensate the
slightly worse properties of the plain aggregation grids (compared to the grids of the
pairwise aggregation schemes).

3.3. Computational cost. The problems were calculated on a cluster where
each node is equipped with two Intel quad-cores Xeon X5365 (clock frequency 3.00
GHz, L2-cache 4 MB shared between two cores, Frontside-bus for on-chip data trans-
fer) per node. The nodes of this machine are connected by a 4xDDR Infiniband
interconnect of a previous generation. The effective bandwidth between two single
processes on different nodes is around 750 MB/s and the latency is around 3.3 µs.
We located up to eight processes on one node of the cluster.

The diagrams in Figure 3.4 show the time that is spent to setup the grid hierarchy.
It is interesting to compare the setup times of the algorithms NP4 and NP8 to that of
A004 and A008. Although the properties of the grid hierarchy appear to be similar,
in particular in the case of A004 and NP4, the setup of A004 is around twice as fast as
that of NP4. This is due to the fact that for NP4 an intermediate coarse-grid operator
(Al+1/2) is calculated. Since the convergence of these two algorithms is essentially
the same, this indicates that using A004 instead of NP4 could be advantageous.

The diagrams in Figure 3.5 analyse the solution phase. One iteration is in general
the faster, the lower the operator complexity of the method is. This is significant if
we compare e.g. NP8 (with the lowest operator complexity) to A008 and the other
plain aggregation methods, and also to NP4. Note that the scaling of the solution
part of the k-cycle methods appears to be very favourable. Only from 8 to 16 parallel
processes, a small bump in the timing curves is visible – this is due to the usage of
the node-to-node interconnect which is not needed for smaller number of processes.

Finally the total computing times (time spent for the solver, i.e. setup and so-
lution phase) is shown in Figure 3.6. With regard to the k-cycle algorithm, it can
be seen that using the plain aggregation scheme A004 instead of the double-pairwise

Fig. 3.4. Computing time of setup phase for problem 1 (left), for problem 2 (right)
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Fig. 3.5. Computing time per iteration of solution phase for problem 1 (left), for problem 2
(right)

Fig. 3.6. Total computing time for problem 1 (left), for problem 2 (right)

aggregation improves the performance of the algorithm, mainly due to the skipped
calculation of the intermediate operators Al+1/2. Using A008 appears to be even
more efficient than A004. This modification of Notay’s k-cycle [10] contributes to
the reduction of the setup time: It is therefore more relevant in situations where the
setup phase significantly contributes to the total computing time. This is the case
e.g. for implementations where the setup phase cannot be implemented as efficiently
as the solution phase like on graphics processing units (GPU), see e.g. Haase et al. [6].
Moreover, we can confirm that using aggregates of around four nodes is a good choice
with regard to the performance: While, on the one hand, smaller aggregates (e.g.
NP2) lead to a too high operator complexity with obvious disadvantages, larger ag-
gregates lead to methods with worse convergence such that the cost per iteration does
not compensate the cost of the higher number of iterations in practical applications.

4. Conclusion and outlook. In our examples, the double-pairwise aggregation
scheme could be replaced by a plain aggregation scheme with a low number of nodes
per aggregate. The convergence of the methods with the plain aggregation scheme
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is slightly worse, but the setup is almost twice as fast. The savings are therefore
significant such that the methods with the plain aggregation scheme are in total
faster. It will be interesting to compare the mathematical properties of the splittings
obtained by both classes of aggregation techniques by the method recently provided
for this purpose by Napov and Notay [8].
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