
Proceedings of ALGORITMY 2012
pp. 151–160

PERFORMANCE OF THE BLOCK JACOBI METHOD
FOR THE SYMMETRIC EIGENVALUE PROBLEM

ON A MODERN MASSIVELY PARALLEL COMPUTER∗

YUUSUKE TAKAHASHI† , YUUSUKE HIROTA‡ , AND YUSAKU YAMAMOTO§

Abstract. In this paper, we consider the solution of a medium-size symmetric eigenvalue
problem on a massively parallel computer using the block Jacobi method. We compare parallel
cyclic block Jacobi methods using 1-dimensional and 2-dimensional data distribution and show that
the latter has advantages in terms of the number of processors that can be used and the frequency and
volume of interprocessor communication. The 2-dimensional scheme has a disadvantage that some
part of the algorithm can be executed by only

√
p processors, where p is the number of processors.

However, a simple analysis shows that this does not degrade weak scalability. This analysis is
supported by performance evaluation on the University of Tokyo’s T2K supercomputer using up
to 1024 cores. We also discuss how to improve the performance of our imlementation from three
viewpoints.

Key words. eigenvalue, block Jacobi method, parallel computing

AMS subject classifications. 15A18, 34L16, 65F15

1. Introduction. Solution of the symmetric eigenvalue problem plays a vital
role in many fields of science and engineering. In a certain kind of molecular dynamics
simulation based on quantum mechanics, there is a need to solve a medium-size (N ∼
10, 000) symmetric eigenvalue problem millions of times to compute time evolution
of a system. Thus speeding up the solution process is strongly desired. Solution of
a medium-size symmetric eigenvalue problem is also important in molecular orbital
methods.

The standard procedure for solving the symmetric eigenvalue problem is based
on tridiagonalization [7]. In this procedure, the input matrix is first transformed to
a symmetric tridiagonal matrix by orthogonal transformations, then the eigenvalues
and eigenvectors of the tridiagonal matrix are computed, and finally, the eigenvectors
of the original matrix are formed by back-transformation. This approach is optimal
from the viewpoint of computational cost. It is adopted by LAPACK [1] and is widely
used. There are also several high performance implementations, such as ScaLAPACK
[5], for massively parallel distributed-memory machines. However, these solvers are
designed with very large-scale problems in mind. To fully exploit the potential of a
parallel machine with thousands of cores, these solvers require matrices of order more
than hundreds of thousands.

In this paper, we consider solving a medium-size symmetric eigenproblem with
thousands of cores. To this end, we use the block Jacobi method. The block Jacobi

∗This work was supported by Core Research for Evolutional Science and Technology (CREST)
Program ”Highly Productive, High Performance Application Frameworks for Post Petascale Com-
puting” of Japan Science and Technology Agency.

†Department of Computational Science, Kobe University, Kobe, 657-8501, Japan
(115x213x@stu.kobe-u.ac.jp).

‡Department of Computational Science, Kobe University, Kobe, 657-8501, Japan
(hirota@stu.kobe-u.ac.jp).

§Department of Computational Science, Kobe University, Kobe, 657-8501, Japan / JST-CREST
(yamamoto@cs.kobe-u.ac.jp).

151



152 Y. TAKAHASHI, Y. HIROTA AND Y. YAMAMOTO

method usually requires computational work several times larger than that of the
tridiagonalization-based method. However, it has several advantages. First, it has
large-grain parallelism; when the block size is L, each processor can perform O(L3)
floating-point operations between synchronization points. Second, most of the com-
putational work is done in the form of matrix-matrix multiplication. This feature is
especially suited for modern microprocessors. Finally, the algorithm is simple and
consists of only two types of computations, namely, solution of a small eigenproblem
and matrix multiplication. The purpose of this paper is to evaluate the performance
of the Jacobi-based symmetric eigensolver on a modern massively parallel distributed-
memory computer and find out performance bottlenecks and opportunities for possible
improvements.

The paper is organized as follows. In Section 2, we explain the block Jacobi
method and strategies for its parallelization. We compare two parallelization schemes,
based on the 1-dimensional and 2-dimensional distributions, and argue that the latter
is more suited in a massively parallel environment. In Section 3, we present perfor-
mance results on the University of Tokyo’s T2K supercomputer with up to 1024 cores.
Finally, Section 4 gives some concluding remarks.

2. The Block Jacobi Method and Its Parallel Implementation.

2.1. The cyclic block Jacobi method. Let A ∈ RN×N be a symmetric ma-
trix. In the block Jacobi method, we divide A into square blocks of size L × L. For
simplicity, we assume that N is divisible by L and let W = N/L. Let us denote
the (I, J)-th block of A by AIJ . In a variant called the cyclic block Jacobi method
[7], we pick up one of the upper off-diagonal blocks, say AIJ (I < J), and apply
an orthogonal transformation on A that annihilates the block. By repeating this for
the W (W − 1)/2 off-diagonal blocks, one sweep is completed. Of course, annihilating
a block will produce nonzero elements into already annihilated blocks, so the entire
sweep must be repeated until the matrix becomes sufficiently close to a diagonal
matrix.

Let the orthogonal matrix used to annihilate the AIJ be denoted by P (I,J). P (IJ)

can be found as follows. Let

Ã =

[
AII AIJ

AJI AJJ

]
∈ R2L×2L(2.1)

and let P̃ ∈ R2L×2L be an orthogonal matrix that diagonalizes Ã, that is,

P̃T ÃP̃ = Λ̃,(2.2)

where Λ̃ is a diagonal matrix. Now, divide P̃ into four L×L submatrices and embed
each submatrix into an appropriate part of IN to get an N × N orthogonal matrix
P (I,J). Then, from Eq. (2.2), we know that the (I, J)-th and the (J, I)-th submatrix

of
(
P (I,J)

)T
AP (I,J) is zero. Thus we have obtained a desired orthogonal matrix. By

multiplying
(
P (I,J)

)T
on the left, only the I-th and J-th block rows of A are updated.

Similarly, by multiplying P (I,J) on the right, only the I-th and J-th block columns of
A are updated. The eigenvectors of A can be computed by accumulating the matrix
P (I,J) used at each step. The algorithm of the block Jacobi method is shown as
Algorithm 1. Although the order of picking up off-diagonal blocks is specified here,
this can be changed as long as each off-diagonal block is selected once in each sweep.



PERFORMANCE OF THE BLOCK JACOBI METHOD 153

After the convergence, the diagonal elements of A are the eigenvalues and the columns
of P are the eigenvectors.

As can be seen from Algorithm 1, the algorithm consists of only two kinds of
operations, namely, solution of a 2L× 2L eigenproblem (step 4) and matrix multipli-
cations (steps 6, 7 and 8). For each (I, J), the computational cost of step 4 is about
32L3, while the cost for steps 6, 7 and 8 is 24L2N . Hence, if L ≪ N , most of the
computation is done in the form of matrix multiplication. Thus the method is suited
for modern high performance architectures.

[Algorithm 1: Cyclic block Jacobi method]
1: P = IN
2: for n = 1, 2, . . . do
3: for (I, J) = (1, 2), (1, 3), . . . , (1,W ), (2, 3), . . . , (W − 1,W ) do

4: Find a matrix P̃ that diagonalizes Ã =

[
AII AIJ

AJI AJJ

]
.

5: Extend P̃ to an N ×N matrix P (I,J).

6: A←
(
P (I,J)

)T
A

7: A← AP (I,J)

8: P ← PP (I,J)

9: end for
10: end for

2.2. Parallelism of the cyclic block Jacobi method. In the cyclic block
Jacobi method, assume that the (I2, J2)-th block is annihilated right after the (I1, J1)-
th block and all of the I1, I2, J1 and J2 are different integers. In that case, since
the four blocks that determines P (I2,J2), namely, AI2,I2 , AI2,J2 , AJ2,I2 and AJ2,J2 , are
unchanged by the orthogonal transformation by P (I1,J1), it does not matter whether
P (I2,J2) is computed before or after the application of P (I1,J1). Thus the computation
of P̃ can be done for (I1, J1) and (I2, J2) in parallel. Moreover, pre-multiplication

(step 6) by
(
P (I1,J1)

)T
and

(
P (I2,J2)

)T
can be done in parallel. This is also true of

the post-multiplication (step 7) and update of P (step 8). Thus there is a large-grain
parallelism.

More generally, assume that all of the I1, I2, . . . , IW/2 and J1, J2, . . . , JW/2 are
different integers. Then step 4 can be done for the W/2 sets, (I1, J1), (I2, J2), . . .,
(IW/2, JW/2), simultaneously. Steps 6, 7 and 8 can also be parallelized in the same
manner. Since there are W (W −1)/2 off-diagonal blocks in the upper triangular part,
the loop over off-diagonal blocks (step 3) can be completed in W − 1 steps if the sets
at each step are chosen judiciously. In this study, we use the standard round-robin
ordering [6]. To be concrete, let W = 8. In the first step, we use the pairs (1, 2),
(3, 4), (5, 6) and (7, 8), as illustrated in Fig. 2.1 (a). Thus we eliminate the blocks
A12, A34, A56 and A78 simultaneously. Before the second step, we fix the number
”1” and rotate other numbers clockwise to get the arrangement in Fig. 2.1 (b). Thus
the pairs at the second step is (1, 4), (2, 6), (3, 8) and (5, 7) and the blocks A14, A26,
A38 and A57 are eliminated. Before the third step, we again fix ”1” and rotate other
numbers clockwise to get the arrangement in Fig. 2.1 (c), which corresponds to the
elimination of A16, A48, A27 and A35. By repeating this 7 (=W − 1) times, we can
generate all the pairs corresponding to all the off-diagonal blocks. Generalization of
this method to a general value of W is straightforward.

The algorithm of the parallel cyclic block Jacobi method is shown as Algorithm



154 Y. TAKAHASHI, Y. HIROTA AND Y. YAMAMOTO

1
2

3
4

5
6

7
8

(a) Step 1

I
J

1
4

2
6

3
8

5
7

(a) Step 2

1
6

4
8

2
7

3
5

(a) Step 3

Fig. 2.1. The round-robin ordering.

2. Here, the pairs (I
(K)
1 , J

(K)
1 ), (I

(K)
2 , J

(K)
2 ) . . ., (I

(K)
W/2, J

(K)
W/2) to be eliminated at the

Kth step are determined as above. In this algorithm, the innermost for loop can be
executed in parallel.

[Algorithm 2: Parallel cyclic block Jacobi method]
1: P = IN
2: for n = 1, 2, . . . do
3: for K = 1, 2, . . . ,W − 1 do

4: for (I, J) = (I
(K)
1 , J

(K)
1 ), (I

(K)
2 , J

(K)
2 ) . . . , (I

(K)
W/2, J

(K)
W/2) do

5: Find a matrix P̃ that diagonalizes Ã =

[
AII AIJ

AJI AJJ

]
.

6: Extend P̃ to an N ×N matrix P (I,J).

7: A←
(
P (I,J)

)T
A

8: A← AP (I,J)

9: P ← PP (I,J)

10: end for
11: end for
12: end for

2.3. Parallel implementation.

2.3.1. The 1-dimensional distribution. To implement the parallel cyclic
block Jacobi method on a distributed memory parallel machine, one has to determine
the data distribution. Most of the existing studies use the 1-dimenstional distribution
[4][6][9][10]. In this approach, W/2 processors are used. The ℓth processor (ℓ =

1, 2, . . . ,W/2) takes charge of the I
(K)
ℓ th and J

(K)
ℓ th block columns and executes lines

5 through 9 of Algorithm 2 for (I, J) = (I
(K)
ℓ , J

(K)
ℓ ). Thus steps 5, 6, 8 and 9 can be

done completely independently, because step 5 uses submatrices only in the I
(K)
ℓ th and

J
(K)
ℓ th block columns and steps 8 and 9 are orthogonal transformations involving only

the I
(K)
ℓ th and J

(K)
ℓ th block columns. To perform step 7, however, the ℓth processor

needs P (I,J) for (I, J) = (I
(K)
1 , J

(K)
1 ), (I

(K)
2 , J

(K)
2 ) . . . , (I

(K)
W/2, J

(K)
W/2). This incurs all-

to-all broadcast. After finishing the for loop of lines 4 through 10, the processors must

exchange the block columns so that the ℓth processor has the I
(K+1)
ℓ th and J

(K+1)
ℓ th

block columns. By choosing the pairs (I
(K)
1 , J

(K)
1 ), (I

(K)
2 , J

(K)
2 ) . . ., (I

(K)
W/2, J

(K)
W/2)

(K = 1, 2, . . . ,W − 1) judiciously, one can ensure that the sets {I(K)
ℓ , J

(K)
ℓ } and

{I(K+1)
ℓ , J

(K+1)
ℓ } have one element in common for all ℓ and K. Then each processor

needs to send and receive only one block column at each step, instead of two block
columns. Also, in the case where the interprocessor network is a ring, one can ensure
that the exchange of block columns occur only between adjacent processors. Much
work has been done on these aspects. See [4], [6], [9] and [10] for example.

The 1-dimensional distribution has the advantage that it can achieve nearly 100%



PERFORMANCE OF THE BLOCK JACOBI METHOD 155

utilization of the processors. In fact, all the processors execute steps 5 through 9 of
Algorithm 2 and there is no idle time. However, it has also several disadvantages.
The greatest problem is that the number of processors p that can be used is severely
limited. Of course, p ≤ N/2 must hold. Moreover, to achieve modest performance
in the matrix multiplication part, the number of columns and rows of the matrices
must be at least 100. Hence, the number of processors that can be used to solve a
problem of N = 10, 000 is limited to about 100, which contradicts our objective of
utilizing thousands of processors to solve a medium-size problem. The 1-dimensional
distribution also has the problem that all-to-all broadcast is needed to share P (I, J)

((I, J) = (I
(K)
1 , J

(K)
1 ), (I

(K)
2 , J

(K)
2 ) . . . , (I

(K)
W/2, J

(K)
W/2)) among all the processors and

that the exchange of entire block columns is needed between processors. Such com-
munication patterns are not desirable in a massively parallel environment.

2.3.2. The 2-dimensional distribution. To avoid these problems, we decided
to use the 2-dimensional distribution in this study. In this approach, W 2/4 proces-
sors are used and the (ℓ,m)th processor (ℓ,m = 1, 2, . . . ,W/2) takes charge of the
four blocks, A

I
(K)

ℓ
,I

(K)
m

, A
I
(K)

ℓ
,J

(K)
m

, A
J

(K)

ℓ
,I

(K)
m

and A
J

(K)

ℓ
,J

(K)
m

. In this approach, the

processors on the diagonal (l = m) execute step 5 of Algorithm 2 and broadcast the
orthogonal matrix P̃ to processors in the same block row (processors with the same
ℓ) and the same block column (processors with the same m). Then all the processors
execute steps 7 through 9 using the orthogonal matrices just received. The algorithm
of the parallel cyclic block Jacobi method using 2-dimensional distribution is shown
as Algorithm 3. Here, the algorithm is written in an MPI-like fashion that is to be
executed on all of the W 2/4 processors.

The 2-dimensional distribution has several advantages. First, it is easier to use
more processors. Even if we put a restriction that the matrix size appearing in matrix
multiplications is at least 100× 100, we can use 10,000 processors to solve a problem
of N = 10, 000 1. Second, there is no need for all-to-all broadcast; the orthogonal

matrix P̃
(K)
ℓ needs to be broadcast only to the processors within the same block row

or column. Third, in the exchange phase, each processor needs to exchange only up
to four blocks and not an entire block column. The second and third points greatly
reduce the frequency and volume of interprocessor communication.

The disadvantage of the 2-dimensional distribution is that only the processors on
the diagonal work in step 11 and other processors become idle. Thus the percentage
of processor utilization is lower than that in the 1-dimensional distribution. However,
from the viewpoint of solving a medium-size problem as quickly as possible, this is
not a severe problem, as long as step 11 does not cause a sequential bottleneck.

To analyze the influence of step 11 on the overall performance, we perform a
weak scalability analysis. More precisely, we fix the size of the matrix allocated to
one processor to 2L× 2L and estimate the computation time of steps 11, 18, 19 and
20 for each K as a function of p, the number of processors. In that case, the matrix
size is N = 2Lp

1
2 . The results on the computation time are given in Table 2.1. Here,

”Computation time” means the computation time per one active processor. From the
table, it can be seen that the ratio of the time for step 11 to the total computation
time is constant that is independent of p. This means that though the processor
utilization in the 2-dimensional distribution is not perfect, it does not degrade weak

1Note that the size of the matrices appearing in the matrix multiplications is 2L× 2L. Thus we
require that L = 50 and the number of processors is W 2/4 = N2/4L2 = 10, 000.



156 Y. TAKAHASHI, Y. HIROTA AND Y. YAMAMOTO

scalability. On the other hand, the results on the communication time are given in
Table 2.2. Here, s is the bandwidth of interprocessor communication (Bytes/sec) and
”Communication time” means the time required to complete the communication. We
assume that broadcast is done using the binary tree and exchange of one block can be
done in one step. We can see from the table that the ratio of the communication time
to the total computation time grows only slowly (like 1

2 log2 p) with p. From these
analysis, we can conclude that the 2-dimensional distribution is suited for a massively
parallel environment.

[Algorithm 3: Parallel cyclic block Jacobi method using 2-d distribution]
1: Get my processor number (ℓ,m).

2: Ã =

[
A

I
(K)

ℓ
,I

(K)
m

A
I
(K)

ℓ
,J

(K)
m

A
J

(K)

ℓ
,I

(K)
m

A
J

(K)

ℓ
,J

(K)
m

]
3: if l = m then
4: P̃ = I2L
5: else
6: P̃ = O2L

7: end if
8: for n = 1, 2, . . . do
9: for K = 1, 2, . . . ,W − 1 do
10: if (l = m) then

11: Find a matrix P̃
(K)
ℓ that diagonalizes Ã.

12: Send P̃
(K)
ℓ to processors with number (ℓ, ∗).

13: Send P̃
(K)
ℓ to processors with number (∗, ℓ).

14: else
15: Receive P̃

(K)
ℓ from processor (ℓ, ℓ).

16: Receive P̃
(K)
m from processor (m,m).

17: end if

18: Ã←
(
P̃

(K)
ℓ

)T

Ã

19: Ã← ÃP̃
(K)
m

20: P̃ ← P̃ P̃
(K)
m

21: Compute I
(K+1)
ℓ , J

(K+1)
ℓ , I

(K+1)
m and J

(K+1)
m .

22: Exchange the blocks with other processors to obtain blocks
A

I
(K+1)

ℓ
,I

(K+1)
m

, A
I
(K+1)

ℓ
,J

(K+1)
m

, A
J

(K+1)

ℓ
,I

(K+1)
m

and A
J

(K+1)

ℓ
,J

(K+1)
m

.

23: end for
24: end for



PERFORMANCE OF THE BLOCK JACOBI METHOD 157

Table 2.1
Computation time of steps 11, 18, 19 and 20 of Algorithm 3.

Step Computation Cost Number of Computation time
processors used

11 Diagonalization of Ã 32L3 × p
1
2 p

1
2 32L3

18 Ã←
(
P̃

(K)
ℓ

)T

Ã 8L2N × p
1
2 p 16L3

19 Ã← ÃP̃
(K)
m 8L2N × p

1
2 p 16L3

20 P̃ ← P̃ P̃
(K)
m 8L2N × p

1
2 p 16L3

Table 2.2
Communication time of steps 12/15, 13/16 and 22 of Algorithm 3.

Step Operation Data size Number Communication time
(in Bytes) of steps

12/15 Broadcast of P̃
(K)
ℓ 4L2 × 8 1

2 log2 p (16L2 log2 p)/s
within row ℓ

13/16 Broadcast of P̃
(K)
ℓ 4L2 × 8 1

2 log2 p (16L2 log2 p)/s
within column ℓ

22 Exchange of the blocks 2× 4L2 × 8 1 64L2/s

3. Experimental Results.

3.1. Computational environments. We implemented a program of the par-
allel cyclic block Jacobi method based on Algorithm 3 and evaluated its performance.
The program is written with C and parallelized using MPI. Diagonalization of Ã’s
(diagonal blocks) is done using LAPACK routine dsyev and matrix multiplications
are performed using BLAS routine DGEMM. The program was run on the University
of Tokyo’s T2K supercomputer, whose specification is listed in Table 3.1. As a test
matrix, we used a random symmetric matrix whose entries are uniform random num-
bers in the interval [0, 10]. The block size is fixed to L = 125 and the matrix size N is

set to 2Lp
1
2 , where p is the number of processor cores used. The values of p are 4, 16,

64, 256 and 1024, so the matrix sizes used in the test are 500, 1000, 2000, 4000 and
8000. The stopping criterion of the block Jacobi method is that the absolute values
of all the off-diagonal elements are less than 10−10.

Table 3.1
Specification of the University of Tokyo’s T2K Supercomputer.

Item Specification

Node AMD Opteron Processor (2.3GHz, 4 cores) × 4
Up to 64 nodes (1024 cores) are used.

Memory 32Gbytes / Node
OS Red Hat Enterprise Linux

Compiler PGI C/C++ Compiler
BLAS & LAPACK AMD Core math Library



158 Y. TAKAHASHI, Y. HIROTA AND Y. YAMAMOTO

3.2. Results. The execution time of our program for various values of p’s are
shown in Fig. 3.1. As can be seen from the graph, diagonalization of Ã’s occupies
most of the time when p is small. As p increases, the time for broadcast and exchange
increases. This is in consistent with our analysis in subsection 2.3 that the diagonal-
ization of Ã’s accounts for only constant portion of the total execution time, although
it is executed using only

√
p cores. Ideally, in the present setting, the total execution

time should increase proportionally with N , because the total computational work is
expected to be O(N3) and the number of cores used is O(N2). However, the graph
shows that the execution time increases more than twice when N is doubled. This is
due to two reasons. First, the times for broadcast and exchange increase rapidly as
p increases. This can be because of contention of messages on the interprocessor net-
work. Second, the number of iterations before convergence increases with p. In fact,
the number of outer iterations (line 8 of Algorithm 3) is 5, 6, 7, 8 and 10 for p = 4, 16,
64, 256 and 1024, respectively. Thus it seems that the number of iterations increases
as O(log2

√
p). Based on these observations, we will discuss possible improvements in

the next subsection.

0

2

4

6

8

10

12

14

16

0

20

40

60

80

100

120

140

160

Computation time (sec)

N = 500 1000 2000 N = 4000 8000

p = 4 16 64 p = 256 1024

Exchange of P

Exchange of A

Update of P

Update of A

Transposition

Computation of P

Broadcast of P

~

~

~

~

~

l
(K)

~
l
(K)

Fig. 3.1. Execution time of the parallel cyclic block Jacobi method on the T2K supercomputer.

3.3. Possible improvements. In view of the observations made in the previous
subsection, we propose possible improvements on our program from three aspects.

3.3.1. Reducing the time for diagonalization of Ã. From Fig. 3.1, it can
be seen that diagonalizaition of Ã consumes nearly half of the execution time when
p = 1024. In the present implementation, this part is done using LAPACK dsyev,
which is based on the QR algorithm. By replacing it with a faster algorithm such
as the divide-and-conquer or MR3, the execution time of this part will be shortened.
Another approach would be to parallelize each diagonalization. However, because the
size of Ã is small, say 100, in our target problem, it is unlikely that parallelization will
produce large speedup. As an alternative, we can use the (block) Jacobi method also
for this diagonalization. This choice provides us with larger parallel granularity, at the
cost of increased computational work. Another advantage of using the Jacobi method
is that, by using an appropriate variant of the Jacobi method, we can compute all the
eigenvalues of A with high relative accuracy. We will investigate these possibilities in
our future work.



PERFORMANCE OF THE BLOCK JACOBI METHOD 159

3.3.2. Reducing the time of broadcast and exchange. As we mentioned
in the previous subsection, the time for broadcast and exchange increases rapidly
with p. This suggests existence of contentions of messages in these operations. The
contentions may be avoidable if we allocate the submatrices to processors judiciously
by taking the network topology into account.

3.3.3. Accelerating the convergence. Recently, it has been shown that the
convergence of the block Jacobi method can be accelerated considerably by using
the QR decomposition as a preprocessing stage [8][3]. Although most of the existing
studies on this topic deal with Jacobi methods for the singular value decomposition,
the same technique can be applied to Jacobi methods for eigenvalue problems as well.
Also, the dynamic ordering approach [2][8], which chooses the off-diagonal blocks
to be eliminated based on their Frobenius norm, may be useful for accelerating the
convergence.

4. Conclusion. In this paper, we consider using the block Jacobi method for
solving a medium-size symmetric eigenvalue problem on a massively parallel com-
puter. We compared parallel cyclic block Jacobi methods using 1-dimensional and
2-dimensional data distribution and showed that the latter has advantages in terms of
the number of processors that can be used and the frequency and volume of interpro-
cessor communication. In contrast to the 1-dimensional scheme, the 2-dimensional
scheme has a part that is executed by only

√
p processors. However, a simple analysis

shows that this part does not degrade weak scalability of the algorithm. This analysis
is supported by performance evaluation on the University of Tokyo’s T2K supercom-
puter using up to 1024 cores. We also discussed how to improve the performance of
our program from three viewpoints. As a future work, we will port our program to
the ”K” supercomputer, which is the world’s fastest supercomputer as of November
2011, and evaluate its performance on thousands of cores.

Acknowledgments. We would like to express our sincere gratitude for the
anonymous reviewer, whose comments helped us much in improving the quality of
this paper. We are also grateful to Professor Marian Vajteršic and Professor Gabriel
Okša for providing valuable comments on our current research project and for pointing
out important literatures on the dynamic ordering approach. This work is partially
supported by Grants-in-Aid for Scientific Research from the Japan Society for the
Promotion of Science, and Core Research for Evolutional Science and Technology
(CREST) Program ”Highly Productive, High Performance Application Frameworks
for Post Petascale Computing” of Japan Science and Technology Agency (JST).

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide. SIAM,
1992.

[2] M. Bečka, G. Okša, and M. Vajteršic. Dynamic ordering for a parallel block-Jacobi SVD
algorithm. Parallel Computing, 28:243–262, 2002.

[3] M. Bečka, G. Okša, M. Vajteršic, and R. Grigori. On iterative QR pre-processing in the parallel
block-Jacobi SVD algorithm. Parallel Computing, 36:297–307, 2010.

[4] C. H. Bischof. The two-sided block Jacobi method on a hypercube, pages 612–618. SIAM, 1988.
[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-

marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
User’s Guide. SIAM, 1997.



160 Y. TAKAHASHI, Y. HIROTA AND Y. YAMAMOTO

[6] R. P. Brent and F. T. Luk. The solution of the singular value and symmetric eigenvalue
problems on multiprocessor arrays. SIAM J. Sci. Statist. Comput., 6:69–84, 1985.

[7] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press, third
edition, 1996.

[8] G. Okša and M. Vajteršic. Efficient pre-processing in the parallel block-Jacobi SVD algorithm.
Parallel Computing, 32:166–176, 2006.

[9] M. Vajteršic and M. Bečka. Block-SVD algorithms and their adaptation to hypercubes and
rings. In N. Mirenkov, Q.-P. Gu, S. Peng, and S. Sedukhin, editors, Proceedings of the
2nd Aizu International Symposium on Parallel Algorithms / Architecture Synthesis, pages
175–181. IEEE Computer Society Press, 1997.

[10] B. B. Zhou and R. P. Brent. A parallel ring ordering algorithm for efficient one-sided Jacobi
SVD computations. J. of Parallel and Distributed Computing, 42:1–10, 1997.


