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ON SOME MODEL REDUCTION APPROACHES FOR
SIMULATIONS OF PROCESSES IN LI-ION BATTERY∗

OLEG ILIEV† , ARNULF LATZ‡ , JOCHEN ZAUSCH§ , AND SHIQUAN ZHANG¶

Abstract. In this work, some model reduction approaches for performing simulations with a
pseudo-2D model of Li-ion battery are presented. A full pseudo-2D model of processes in Li-ion
batteries is presented following [1], and three methods to reduce the order of the full model are
considered. These are: i) directly reduce the model order using proper orthogonal decomposition,
ii) using fractional time step discretization in order to solve the equations in decoupled way, and
iii) reformulation approaches for the diffusion in the solid phase. Combinations of above methods
are also considered. Results from numerical simulations are presented, and the efficiency and the
accuracy of the model reduction approaches are discussed.
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1. Introduction. Secondary Li-ion batteries used for technical applications are
based on porous insertion electrodes. In most of the technical applications the porous
electrodes are random structures of active particles bound together by a mixture of
polymeric binder and soot for enhancing the electrical conductivity of the electrode.
During charging Li-ions are de-intercalated from the anode particles into the elec-
trolyte and transported through the electrolyte to the porous cathode. There they
are intercalated at the surface of the cathode particles and then transported via dif-
fusion into the interior of particles. It is well understood that the microstructure
(e.g. size and arrangement of the active particles in the porous electrodes) signifi-
cantly influence the performance of the battery. Going beyond porous structures, it
has even been shown that specifically designed electrodes, can achieve a much larger
power density [2], but still a lot of research is needed in order to quantitatively eval-
uate the influence of 3D structures. Available 3D microscale models include mass
transport in the electrolyte and in the solid particles, coupled with an equation for
the potential [3, 4] and more generally also with an additional equation for the tem-
perature [5]. Solving these models is only possible on cuts through the whole cell
covering nevertheless the whole cathode anode direction [6, 7]. Simulations on the
complete microstructure is not yet possible due to the tremendous CPU demand. One
approach to overcome this problem at least for random porous electrodes pioneered
by the group of J. Newman [8] is to model the electrodes as effective random one
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dimensional porous media characterized by a porosity [9, 10, 11, 12, 13, 14, 15]. Their
effective transport properties are obtained by averaging the properties of electrolyte
and the active particles. In addition the transport within the particles is modeled
as diffusive transport in one effective particle per volume element coupled to the
transport in the effective porous medium. The separator is also described as effective
porous medium. Thus a pseudo-2D model (i.e. 1D+1D model) for the full battery cell
is obtained. Three dimensional extensions (more exact 3D+1D models), which allow
to simulate complex shaped electrodes are possible [16]. These macroscopic models
are solved by some numerical method, e.g., finite difference, finite volume or finite
elements. One (representative) spherical particle is located in each grid node (for
FDM and FVM), or in each quadrature point (for FEM), and the macroscopic model
is coupled to the model in the particle (see the text below for details). The solution
of the coupled model (called also full model below in the text) requires solving diffu-
sion equation for each particle in an extra pseudo-dimension, namely in the radius r.
Consequently, the number of unknown variables in this 1D+1D model is large, thus
still requiring significant computational time. To obtain models which can be solved
in real time further approaches for reducing the demanded computational times have
appeared in the literature. The goal of this paper is to present a computational study
of the performance of three model reduction approaches, when applied to simulation
of processes in Li-ion battery.

First, consider the approach which was earlier presented in [1]. It exploits reduced
order method, ROM, which is based on proper orthogonal decomposition, POD. The
Authors claimed that this method is efficient for the pseudo-2D model, and they
provided some simulation results for test cases. However, the parameters (and thus
regimes) for simulation of real processes sometimes differ from conditions considered
in test cases, and therefore more studies are required for the case of real parameters.

Further on, reformulation methods were used to avoid solving the diffusion equa-
tion in the active particles, see, e.g. [8, 3, 17, 18, 19, 20, 21]. These methods are based
on approximating the concentration in solid phase by some selected functions of r,
followed by volume averaging. The basis functions are global (defined from 0 to R),
but very few of them are used. The aim of the volume averaging is to avoid solving
the diffusion equation in the active particles. Zhang and White [20] compared some
of the reformulation methods and discussed their efficiency in solving test examples.

In this paper, we consider both of the above methods and apply them in order to
reduce the model order of the pseudo-2D li-ion battery model. In the case of ROM
based on POD, we select a basic set of parameters and perform full simulations.
After that the solution is used to form so called transform basis. The latter are
used to form reduced order model, and later on to simulate the processes for other
sets of parameters. We also review most of the reformulation methods and consider
combination of reformulation and ROM-POD approaches. Further on, we consider
one new way to reduce the the complexity of the problem, namely a fractional time
step discretization, allowing to solve for all the unknowns in a decoupled way. The
dominated part of the unknowns can be solved in parallel, and the other part can be
combined with ROM-POD to further increase the efficiency.

The rest of the paper is organized as follows. In section 2 we describe the full
model and the discretization. In section 3, we discuss the method of ROM based on
POD and apply it to reduce the order of the full pseudo-2D model. In section 4, we
present the fractional time step discretization and solve the full model in a decoupled
way. In section 5, we review the reformulation methods and combine them with ROM.
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Table 2.1
Governing equations and expressions

variable equation boundary conditions

cs
∂cs
∂t

= Ds
1
r2

∂
∂r

(r2 ∂cs
∂r

) − ∂cs
∂r
|r=0 = 0, − ∂cs

∂r
|r=Rs,i = ji

ce εi
∂ce
∂t

= Deff,i
∂2ce
∂x2 + (1 − t+)aiFji −Deff,i

∂ce
∂x

= 0

Φ1 σeff,i
∂2Φ1
∂x2 = aiFji −σeff,p

∂Φ1
∂x

= I, Φ1|x=Lp+Ls+Ln = 0

Φ2 − ∂
∂x

(κeff
∂Φ2
∂x

) + β ∂
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(κeff
∂lnce
∂x

) = aiFji −κeff,i
∂Φ2
∂x

= 0

initial conditions cs,i(r, 0) = cs,i,0 ce(x, 0) = c0
interface conditions

x = Lp −Deff,p
∂ce
∂x

= −Deff,s
∂ce
∂x

−σeff,p
∂Φ1
∂x

= 0 −κeff,p
∂Φ2
∂x

= −κeff,s
∂Φ2
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x = Lp + Ls −Deff,s
∂ce
∂x

= −Deff,n
∂ce
∂x

−σeff,n
∂Φ1
∂x

= 0 −κeff,s
∂Φ2
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= −κeff,n
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expressions

Up = 4.199 + 0.0566tanh(−14.555θp + 8.609) − 0.0275[(0.998 − θp)−0.492 − 1.901] − 0.157exp(−0.0474θ8p)
+0.81exp[−40(θp − 0.134)]

Un = −0.16 + 1.32exp(−3.0θn) + 10.0exp(−2000.0θn))
θp = cs,p,surf /cs,p,max, θn = cs,n,surf /cs,n,max

ji = 2km(cs,i,max − cs,i,surf )0.5c0.5s,i,surf c
0.5
e sinh( 0.5F

RT
(Φ1 − Φ2 − Ui))

σeff,i = σi(1 − εi − εf,i), ai = 3
Rs,i

(1 − εi − εf,i), i=p,n

κeff,i = (4.1253 × 10−2 + 5.007 × 10−4c − 4.7212 × 10−7c2 + 1.5094 × 10−10c3 − 1.6018 × 10−14c4)ε
bruggi
i

Deff,i = Deε
bruggi
i

, i = p, s, n

Conclusions are given in section 6.

2. Full pseudo 2D model. The sketch of a LiMnO2-carbon battery is shown
in Fig. 2.1. From left to right, the components of the battery are aluminum current
collector, LiMnO2 positive electrode, separator, carbon negative electrode, and copper
current collector. The governing equations and related expressions are summarized
in Table 2.1 (see also [1]), and the parameters are given in Table 2.2.

Fig. 2.1. Schematic of a lithium battery

For the discretization of the above model, cell centered finite volume method is
adopted. The domain (0, Lp + Ls + Ln) is divided into Np + Ns + Nn cells. Active
particles are placed at the centers of those cells, which belong to the electrodes. The
processes in the porous electrodes, described by macroscopic equations, are coupled
via Butler-Volmer flux conditions on the surface of the particle to the processes in the
particles, described by 1D model in spherical coordinates. Thus the pseudo-2D model
assumes that the particles in the center of the grid cells (see Fig. 2.2) are typical and
represent all other particles in the cell. The active solid particles are considered to
have spherical form, and it is further assumed that processes in r direction dominate,
so that 1D model can be used in each particle. The radius r of each particle is
divided into Nr control volumes (cells). Nr = 50 is used in simulations presented
here. The (macroscopic) x− regions of the positive electrode, of the separator, and of
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Table 2.2
Parameters

Parameter Value Unit Parameter Value Unit
Lp 183 µm cs,p,max 22860 mol/m3

Ls 52 µm cs,n,max 26390 mol/m3

Ln 100 µm cs,p,0 3900 mol/m3

Rs,p 8 µm cs,n,0 14870 mol/m3

Rs,n 12.5 µm σp 3.8 S/m

Ds,p 1.0 × 10−13 m2/s σn 100 S/m

Ds,n 3.9 × 10−14 m2/s Bruggp 1.5 –
De 7.5 × 10−11 m2/s Bruggs 1.5 –
εp 0.444 – Bruggn 1.5 –
εs 1.0 – kp 2.334 × 10−11 mol/m2s/(mol/m3)1.5

εn 0.357 – kn 2.334 × 10−11 mol/m2s/(mol/m3)1.5

εf,p 0.259 – t+ 0.363 –

εf,n 0.172 – I 17.5(1C rate) A/m2

c0 2000 mol/m3 T 298 K

the negative electrode, are discretized into Np = 100, Ns = 70, and Nn = 100 control
volumes, respectively.

Fig. 2.2. A typical volume in electrode

Thus, with the selected Ns, at every grid node of the macroscopic grid (x- coor-
dinate), there are 54 unknowns. They are arranged in the following order: the first 50
unknowns correspond to the concentration of lithium ions in the respective particle,
numbered from the center to the surface of particle. The 51th unknown stands for
the concentration on the surface of the particle, the 52th unknown stands for the con-
centration in the electrolyte, the 53th stands for the potential in the solid phase, and
the last one stands for the potential in the electrolyte. The respective 54 equations
arising after the discretization are numbered from i1 to i54 and they look as follows:
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h2
x
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h2
x
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2
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2
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x
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2
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2
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h2
x
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Where κβ = κeffβ
ce

, κeff,i+ 1
2

is harmonic average of κeff,i+1 and κeff,i, means

κeff,i+ 1
2

= 2κeff,i+1κeff,i
κeff,i+1+κeff,i

, and similar to κeff,i− 1
2
, κβ

eff,i+ 1
2

and κβ
eff,i− 1

2
.

Remark 2.1. In the above discretization, j equal to jp in positive electrode, zero
in separator and jn in negative electrode. For the surface concentration, as there is
no governing equation for it in Table 2.1, we just interpolate it with the two nearest
unknowns inside the particle, combined with the surface condition. For the nodes
in the separator, only equations with numbers (i52) and (i54) are used, all other
unknowns are assigned to be zeros.

Remark 2.2. For the treatment of interface conditions at x = Lp (similarly at x =
Lp + Ls), we use −Deff,p

∂ce
∂x = −Deff,s

∂ce
∂x = −Deff,ps

ce,s−ce,p
0.5(hp+hs)

and −κeff,p ∂Φ2
∂x =

−κeff,s ∂Φ2
∂x = −κeff,ps Φ2,s−Φ2,p

0.5(hp+hs)
, where Deff,ps is harmonic average of Deff,p and

Deff,s, and similar to κeff,ps.
For the time discretization, first order backward Euler is adopted. Uniform time

step is used, and standard Newton-Raphsion method is applied to solve the obtained
nonlinear system.

3. Reduced order model based on POD.

3.1. Method description. Here we adopt the standard procedure for POD
based model order reduction [1, 22]. The basic idea for model order reduction is
that instead of solving the full model solution x directly, we first solve some reduced
variable y, and obtain the desired solution by x = By. Where the basis B is pre-
constructed by using POD method for the full model solution of one base case and
choose very few dominated eigenvectors, thus the reduced system for y is much smaller
than the full model system for x. More details about the method and algorithm can
be found in ITWM report [23].
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3.2. Results and discussion. To test the efficiency of the presented ROM
method, we consider three different examples here. In all the examples, the results
obtained with ROM are compared with the solution of the full model.

(1) We choose the base case to be 1C discharge with the parameters given in
Table 2.2, and change initial conditions (ce(x, 0) = 2500, cs,n(r, 0) = 18870) as tested
case. In this example, the base case and the tested case differ only in the values for
the initial conditions. The full model solution and the ROM solution of the tested
case are compared in Fig. 3.1. We can see that the ROM with only 27 eigenvectors
(for comparison, the size of the full system is 14580) approximate the solution of the
full model very well.

Fig. 3.1. Change initial conditions Left: cell potential; Right: concentration at interfaces

(2) we choose the same base case as in the first example, but choose as tested
case a problem with characterized by 10C discharge. All other parameters are the
same as in the base case. For this example, we can also obtain very accurate results
with very few eigenvectors.

(3)The third considered example corresponds to simulation of discharge-charge
cycles. In one cycle, the battery is first discharged at 1C rate until the cell potential
decrease to 3.0 V., followed by a 1C charge process up to 4.3 V, and at the last stage
of the cycle the battery is charged at 4.3 V until the current decreases to 10 mA. In
the simulations, we choose the solution of one cycle as a base solution, form reduced
system and use the latter to simulate many cycles. In this case, we can obtain similar
results as example 1 and 2 by choosing few eigenvectors.

4. Fractional time step discretization.

4.1. Method description. Consider again the full model. When first order
backward Euler is used for time discretization, the resulting discretized system at
time tn+1 is written as follows

M
xn+1 − xn

4t
= f(xn+1)

We divide all the unknowns into two classes, namely x = (xe,xp), where we
choose xp = (cs, cs,surf ) as concentration in the particles, and xe = (ce,Φ1,Φ2) to
be collection of the remaining unknowns. With the new notations, the original full
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model system can also be solved by the following decoupled way:

Me
xn+ 1

2
e − xne
4t

= f1(xn+ 1
2

e ,xnp ) (4.1)

Mp

xn+1
p − xnp
4t

= f2(xn+ 1
2

e ,xn+1
p ) (4.2)

The above predictor-corrector discretization means that at each time step we first
solve for xe using the solution of xp at the previous time, and after that solve for xp at
the new time step, using just computed xe. Note, the questions about the theoretical
study on the stability of this fractional time step discretization are not studied here.
We can just note that our simulations show that it is worth to use this approach.

Remark 4.1. Note that in this particular problem xp contains much more un-
knowns compared to xe, and that one can solve the predictor step for each particle
separately, as long as the values from the previous time step are used for xe. As
a result, this decoupled solve works much faster than the coupled solve for the full
model.

Remark 4.2. For the solve with respect to xe at each time step, we can use the
previous ROM method in order to reduce the order of this system. This combination
of using decoupled solve (fractional time step discretization) and ROM, can further
improve the efficiency.

4.2. Results and discussion. We test coupled and decoupled system in two
cases: 1C discharge and 10C discharge. For decoupled system, we need some restric-
tions on the time step. If uniform time step is used, the time step need to satisfy
4t < 70s for 1C case and 4t < 7s for 10C case. If the time step satisfy these con-
ditions, solving the decoupled system is much faster than solving the coupled system
and, and the results obtained by the two approaches are very close. It should be
noted that often very large time steps (even if allowed by the stability consideration)
can not be used in the simulations, because this would lead to lose of accuracy. See
Fig. 4.1 for the results of cell potential.

Fig. 4.1. Cell potential. Left: 1C rate; Right: 10C rate.

As pointed out in Remark 4.2, the above presented ROM approach presented can
be used to solve for xe at each time step. The results from such an approach for
example 2 are given in Fig. 4.2. It can be seen that in this case the solution of the
full model is approximated very well.
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Fig. 4.2. Change C rates Left: cell potential; Right: concentration at interfaces

5. Reformulation of particle diffusion. In the full model, most of unknowns
come from the discretization of the following diffusion equation inside the particle

∂c

∂t
−Ds

1
r2

∂

∂r
(r2 ∂c

∂r
) = 0 (5.1)

with boundary condition

Ds
∂c

∂r
= 0 at r = 0, Ds

∂c

∂r
= −j at r = Rp for t ≥ 0

where j is the pore wall flux at the surface of particle and Rp is the radius of the
particle. If we can avoid solving this equation, then the number of unknowns will
decrease sharply. This is called Macro-Micro scale coupled simulation or reformulation
of diffusion in solid phase. Below we will shortly review some of the existing methods
in this area, will discuss their advantages and disadvantages, and will combine best
of them with the above introduced ROM method.

Duhamel’s superposition method [8] was the first approximation method used
in the porous electrode model. It relates the solution of a boundary value problem
with time dependent boundary conditions to the solution of a similar problem with
time-independent boundary conditions by means of a simple relation.

By assuming the li-ion diffusion inside the particle is some polynomial and using
the volume averaging technique, two kind of polynomial reformulation methods (called
lower order (quadratic polynomial) and higher order (fourth order polynomial)) are
proposed in [18]. Similarily, by assuming a parabolic concentration profile in the
diffusion layer and using the volume average technique, [3] determined the diffusion
length to be ls = Rp/5 for spherical particles. Liu [19] applied pseudo steady state
(PSS) method, which is a form of a finite integral transform technique to eliminate
the independent spatial variable r from the solid phase diffusion equation.

It is reported in [20] that Duhamel’s superposition method is more CPU time
consuming than the full model, so we don’t consider it here. PSS is numerically
unstable as the values of the introduced there non-physical variables qm are too large
(1010 to 1050 for our test cases). Low order polynomial and diffusion length method
are exactly the same in our cases, they work well for low current rate discharge
but do not work for high discharge rate. High order polynomial can work with all
the current rates, but the accuracy with higher discharge rate is not very good, see
Fig. 5.1. So next we only describe the the correct diffusion length method and Galerkin
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reformulation method in detail, the details for the review of other methods can be
found in [20, 23].

5.1. Correct diffusion length method. Wang and Srinivasan [17] corrected
the diffusion length method by empirically incorporating an intuitively expressed time
dependent term into the diffusion length equations:

d

dt
c(t) + 3

j

Rp
= 0 (5.2)

Ds

ls
[cs(t)− c(t)] = −j(1− exp(−4

3

√
Dst

ls
)) (5.3)

In this way, at each grid cell in electrodes, we only need to solve the above
equations for c(t) =

∫ Rp
r=0

3r2c(r, t)dr and cs(t) = c(Rp, t), and avoid solving (5.1).

5.2. Galerkin reformulation. Galerkin reformulation [21] is a modification of
PSS method. By assuming c(r, t) = a(t) + b(t)(r2) +

∑Nq
m=1

dm(t)sin(λmr)
r and similar

volume average technique, the reformulation is:

d

dt
c(t) + 3

j

Rp
= 0 (5.4)

Ds

Rp
[cs(t)− c(t)] = − j

5
+ 2j

Nq∑
m=1

1
λ2
m

− Ds

Rp

Nq∑
m=1

λ2
msin(λm)Qm (5.5)

dQm
dt

+
Ds

R2
p

λ2
mQm −

2
Rpλ2

msin(λm)
j = 0, m = 1 · · ·Nq (5.6)

λm = tan(λm) m = 1 · · ·Nq (5.7)

5.3. Results and discussion. For the test case here, the correct diffusion
length method and Galerkin reformulation with Nq = 4 work well for all the dis-
charge rates, see Fig. 5.1 for the case of 10C discharge.

Fig. 5.1. 10C discharge. Left: cell potential; Right: concentration.

The reformulated system for the particle can be combined with the above intro-
duced ROM method to further reduce the system order. The results obtained with a
combined use of ROM and the correct diffusion length method are given in Fig. 5.2
for the case of change different initial conditions.
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Fig. 5.2. Change initial conditions Left: cell potential; Right: concentration at interfaces

6. Conclusion. The main goal of this paper is to discuss various model reduc-
tion approaches for simulations of Li-ion transport described by pseudo-2D model of
the battery. For ROM based on POD, provided the solution for a basic case (i.e., for
a basic set of parameters) is known, we can decompose this solution via POD, choose
the dominating eigenvectors to form a reduced order model, ROM, and further use
this ROM to compute approximate solutions of the pseudo 2D model for other sets
of parameters. Furthermore, it was stated that a decoupled solve, with some minor
restriction on time step, is much faster than a coupled solve for the full model, while
preserving good accuracy. Finally, several approaches for the reformulation of diffu-
sion in solid phase were discussed, and it was shown that the correct diffusion length
method and Galerkin reformulation work well for the test cases considered here. We
also show that both, the decoupled solve and the diffusion reformulation method, can
be combined with ROM based on POD in order to further increase the computational
efficiency.
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