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ERROR CONTROL BASED MODEL REDUCTION FOR
MULTISCALE PROBLEMS

MARIO OHLBERGER∗

Abstract. In this contribution we review a posteriori based discretization methods for vari-
ational multiscale problems and suggest a suitable conceptual approach for an efficient numerical
treatment of parametrized variational multiscale problems where the parameters are either chosen
from a low dimensional parameter space or consists of parameter functions from some compact low
dimensional manifold that is embedded in some high dimensional or even infinite dimensional func-
tion space. The approach is based on combinations of ideas from established numerical multiscale
methods and efficient model reduction approaches such as the reduced basis method.
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1. Introduction. In this contribution we are interested in efficient approxima-
tion of parameterized multiscale problems in a very general parameterized variational
setting. Let U, V denote trial and test function spaces mapping from Ω ⊂ Rd, d =
1, 2, 3 to R. We look at solutions uεµ ∈ U of a parametrized variational problem of
the form

Rεµ[uεµ](v) = 0 ∀v ∈ V. (1.1)

with an ε and µ-dependent mapping Rεµ : U → V ′ where ε denotes a parameter that
indicates the multiscale character of the problem, and µ : Ω → Rp, p ∈ N denotes a
vector of parameter functions that do not depend on ε.

In the most simple case we consider linear elliptic homogenization problems, where

U = V = H1
0 (Ω), Rεµ[u] := Aεµ[u]− Fµ, (1.2)

Aεµ[uε](v) =
∫

Ω

µ1A
ε∇u∇v, Fµ(v) =

∫
Ω

µ2fv (1.3)

for some ε dependent diffusion tensor Aε(x) = A(xε ) : Ω→ Rd×d and a source function
f : Ω→ R. Here µ1, µ2 denote two components of µ : Ω→ Rp, p = 2.

Classical numerical multiscale methods such as multiscale finite elements [20, 13],
variational multiscale methods [21], multiscale finite volume methods [2, 29] or the
heterogeneous multiscale method [11] are designed to approximate variational prob-
lems of type (1.1) for fixed parameters µ. On the other hand, classical model re-
duction approaches such as the reduced basis method [32, 15] are designed to treat
parametrized systems for fixed, but moderate ε. In this contribution we review nu-
merical multiscale and reduced basis approaches with particular view to the a priori
versus a posteriori character in the construction of approximation spaces and cor-
responding discretization schemes. Based on these observations we come up with a
general model reduction approach for parametrized multiscale problems of type (1.1)
and discuss specific realizations of this approach.
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In Section 2 we outline several numerical multiscale approaches. In the following
Section 3 we discuss available adaptive schemes based on a posteriori error estimates.
Section 4 then introduces the reduced basis approach and discusses its limitations
in the multiscale scenario. Combing ideas from reduced basis methods with numer-
ical multiscale approaches, we then introduce a general concept for model reduction
of multiscale problems in Section 5 and discuss offline versus online computational
complexities in Section 6

2. General setting for numerical multiscale methods. Numerical multi-
scale methods make use of a possible separation of scales in the underlying problem.
The macroscopic scale is defined by a priori chosen macroscopic approximation spaces
UH ⊂ U, VH ⊂ V , typically chosen as piecewise polynomial functions on a uniform
coarse partition TH of Ω. The fine scale in the multiscale problem is usually defined by
a priori chosen microscopic approximation spaces Uh ⊂ U, Vh ⊂ V , also typically cho-
sen as piecewise polynomial functions on a uniform fine partition Th of Ω. For suitable
choices of polynomial degrees and meshes the spaces should satisfy UH ⊂ Uh ⊂ U ,
and VH ⊂ Vh ⊂ V , respectively. In this setting, let us denote with πUH : U → UH ,
πVH : V → VH projections into the coarse spaces. We then define fine parts of U,Uh,
or V, Vh through

Uf := {u ∈ U : πUH (u) = 0}, Uf,h := {uh ∈ Uh : πUH (uh) = 0},
Vf := {v ∈ V : πVH (v) = 0}, Vf,h := {vh ∈ Vh : πVH (vh) = 0}.

The solution uεµ ∈ U of (1.1) can now be decomposed into uc + uf ∈ UH ⊕ Uf ,
satisfying

Rεµ[uc + uf ](vH) = 0 ∀vH ∈ VH , (2.1)
Rεµ[uc + uf ](vf ) = 0 ∀vf ∈ Vf . (2.2)

This is a coupled system of a macroscopic and a fine scale variational problem for
(uH , uf ) that is equivalent to the original formulation (1.1).

A discrete counterpart is immediately defined by replacing Uf , Vf by its discrete
counterparts Uf,h, Vf,h, i.e. uεµ,h ∈ Uh is defined through its decomposition uεµ,h =
uH + uf,h ∈ UH ⊕ Uf,h, satisfying

Rεµ[uH + uf,h](vH) = 0 ∀vH ∈ VH , (2.3)
Rεµ[uH + uf,h](vf,h) = 0 ∀vf,h ∈ Vf,h. (2.4)

Depending on the choice of trail and test functions, and by further localization
of the fine scale equation (2.4) a variety of numerical multiscale methods can be
recovered. For a detailed derivation of the multiscale finite element method, the
variational multiscale method, and the heterogeneous multiscale method in such a
framework we refer to the expositions in [26] and [18].

To exemplify this approach, let us derive the heterogeneous multiscale method
in the case of the simple elliptic multiscale problem (1.2), (1.3). Therefore, we first
introduce a partition TH of Ω and a macroscopic conforming discrete function spaces
UH = VH ⊂ H1

0 (Ω), e.g. by choosing globally continuous, piecewise polynomial finite
element spaces. Furthermore, we choose quadrature rules (ωT,q, xT,q)

Q
q=1 for T ∈ TH .

With each quadrature point xT,q, we associate a local function space

U δf,xT,q := {uf,xT,q = uf,h|Y δ(xT,q) : uf,h ∈ Uf,h)}
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where Y δ(xT,q) is an appropriate discrete δ-environment of xT,q that can be decom-
posed with elements from the fine mesh Th. We define local corrector operators
QxT,q : UH → Uδf,xT,q through

Rεµ[uH +QxT,q (uH)](vf,xT,q ) = 0 ∀vf,xT,q ∈ Uδf,xT,q . (2.5)

The definition of the correctors is a localized form of the fine scale equation (2.4). A
corresponding local reconstruction operator RxT,q is then given as

RxT,q (uH) = uH +QxT,q (uH) (2.6)

and we obtain the heterogeneous multiscale solution uH ∈ UH by using numerical
quadrature and replacing uH + uf,h by the localized reconstruction RxT,q (uH) in the
coarse scale equation (2.3). We thus obtain, e.g. in the simple elliptic multiscale
problem (1.2), (1.3) that uH satisfies

∑
T∈TH

Q∑
q=1

ωT,q

∫
Y ε(xT,q)

− µ1A
ε∇RxT,q (uH) · ∇ΦH =

∫
Ω

µ2fΦH , ∀ΦH ∈ UH (2.7)

where we suppose ε < δ, i.e. Y ε(xT,q) ⊂ Y δ(xT,q), and again Y ε(xT,q) is an appro-
priate discrete δ-environment of xT,q that can be decomposed with elements from the
fine mesh Th.

3. A priori versus a posteriori based construction of approximation
spaces. Discretizations of partial differential equations are based on approximations
in finite dimensional spaces Uh, Vh that are supposed to approximate U, V . If the finite
dimensional spaces are chosen as subspaces, a discrete formulation can be obtained
e.g. by Galerkin projection of the original problem onto the discrete spaces. The
approximate model for (1.1) then reads: Find uεµ,h ∈ Uh such that

Rεµ[uεµ,h](vh) = 0 ∀vh ∈ Vh. (3.1)

Concerning the construction of the approximation spaces, we distinguish between a
priori and a posteriori approaches. In an a priori approach, the construction reflects
a priori error estimates that are typically of the form

||uεµ − uεµ,h|| ≤ C inf
uh∈Uh

||uεµ − uh|| (3.2)

In this case, the true error is estimated by the best-approximation error of an element
uεµ ∈ U in the discrete approximation space Uh. Appropriate discretization spaces in
this setting should thus be able to have uniform approximation quality with respect
to arbitrary elements from U . In grid based methods, such spaces are typically con-
structed as piecewise polynomial spaces on uniformly refined grids. For multiscale
problems, however, the usage of piecewise polynomial spaces would lead to very fine
meshes, as fast data oscillations would have to be resolved, although the global be-
havior of the solutions could be well represented with polynomials on coarse meshes.
A way out of this discrepancy between data approximation and representation of the
macroscopic behavior of the solution is the construction of locally adapted basis func-
tions that incorporate local responses of the solution operator. This is the basis of
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most numerical multiscale techniques. A priori error estimates are meanwhile avail-
able for all established classes of numerical multiscale methods in the case of linear
elliptic or parabolic equations in the case of periodic or stochastic homogenization
problems. Moreover, there are also results for the multiscale finite element method
and the heterogeneous multiscale method for quasilinear and monotone elliptic ho-
mogenization problems [12, 19, 4, 14].

On the other hand, in an a posteriori approach, the choice of discretization spaces
reflect a posteriori error estimates of the form

||uεµ − uεµ,h|| ≤ η(uεµ,h) (3.3)

where η(uεµ,h) denotes an a posteriori indicator that can be computed from the ap-
proximate solution. Different from the a priori approach, the estimate in this case
incorporates approximate information of the underlying problem and is not purely
related to approximation properties of function spaces. For grid based discretization
methods, such a posteriori error estimates enable to construct approximation spaces
that are specifically tailored to approximate the solution of the particular partial dif-
ferential equation. The construction is usually done by h, p, or r-refinement, or a
combination of these. In the context of multiscale problems, such approach naturally
induces an adaptive construction of macroscopic meshes, and a correlated adaptive
construction of locally adapted basis functions. Also here, the resulting approxima-
tion spaces are specifically constructed to approximate one particular solution of the
underlying variational problem.

A posteriori error estimates for multiscale methods have been derived in the con-
text of the variational multiscale method (cf. [24, 26] and references therein), and for
the heterogeneous multiscale method (cf. [30, 3, 17] and references therein). To our
knowledge, so far no a posteriori results are available for the multiscale finite element
method or multiscale finite volume approaches. In the particular case of the above
defined heterogeneous multiscale method for linear elliptic multiscale problems (2.5),
(2.7) an a posteriori error estimate was first derived for the periodic homogenization
case in [30], based on a comparison of the heterogeneous multiscale method with a
standard finite element approximation with quadrature of the corresponding two scale
homogenized variational formulation. The a posteriori error estimate is localized and
contains error indicators that allow to construct adapted function space, both at the
macro scale and the fine scale. The construction of the function spaces is based on
local grid adaptivity. Moreover, the error indicators also give information on how to
choose the fine grid size with respect to the coarse grid size.

If not only one variational problem is considered, but rather a whole class of
parametrized problems, a classical a posteriori approach based on local refinement
would result in the construction of different approximation spaces for different choices
of parameters. On the other hand, an a priori approach would allow to stay with one
approximation space for the whole class of problems at the price of a usually very
high computational complexity, as this function space would not take into account
the particular structure of the solution manifold. Model reduction techniques such
as the reduced basis approach try to combine the benefits of a priori and a posteriori
approaches in the context of parametrized problems. The basic idea is to start from
an a priori choice of the approximation space (usually very high dimensional) and to
construct a reduced subspace (usually very low dimensional) in an a posteriori manner
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that is tailored to approximate the solution manifold of the underlying parametrized
problem.

In the next Section we review the construction process of reduced approximation
spaces in the reduced basis framework in more detail and finally discuss suitable
adjustments in the multiscale setting in Section 5.

4. Model reduction with reduced basis techniques. Let us look at para-
metrized multiscale problems of type (1.1) for fixed ε in the classical reduced basis
framework [31, 32] where µ ∈ P ⊂ Rp denotes a parameter vector. For simplicity of
presentation, let us suppose that the trial and test spaces for problem (1.1) coincide,
i.e. U = V and that we are given an a priori chosen high dimensional approximation
space Vh such that the discretization error for the discrete problem (3.1) is negligible
for arbitrary µ ∈ P.

Reduced basis methods can now be summarized as follows: For any subspace
Vred ⊂ Vh, define uεµ0,red

∈ Vred as solution of the reduced problem

Rεµ[uεµ,red](vred) = 0 ∀vred ∈ Vred (4.1)

and let us suppose that we are given an a posteriori error estimate

||uεµ,h − uεµ,red|| ≤ ηred(uεµ,red). (4.2)

Based on such a posteriori error estimate a sequence of reduced spaces VN ⊂ Vh,
N = 0, 1, . . . with dimension N are constructed from (3.1) with the following iterative
Greedy algorithm:

1. Let a tolerance TOL > 0 be given and define a suitable finite training set
Σtrain ⊂ P.

2. Choose a parameter µ0 ∈ Σtrain, compute uεµ0,h
∈ Vh from (3.1) and define

V0 := span(uεµ0,h
).

3. Let VN−1 be given. To construct VN , first compute

µN := arg maxµ∈Σtrainηred(u
ε
µ,N−1)

where uεµ,N−1 ∈ VN−1 is a solution of (4.1) for Vred = VN−1. Compute
uεµN ,h ∈ Vh from (3.1) and define

VN := span(VN−1, u
ε
µN ,h).

4. If ηred(uεµN ,N−1) > TOL, set N := N + 1 and continue with step 3, else stop
and return VN .

The resulting space VN is called reduced space and a basis ΦN of VN reduced
basis.

Given an arbitrary µ ∈ P, the reduced basis approximation uεµ,N ∈ VN is defined
through (4.1) for Vred = VN .

It is clear from construction that the dimension of the reduced problem is given
by N := dim(VN ) and it can be expected form a priori analysis [9] that N can be
chosen very small in comparison to dim(Vh). However, the calculation of the reduced
Fréchet derivatives still has high dimensional complexity of orderO(dim(Vh)). To deal
with this complexity, the calculation of reduced Fréchet derivatives is split into an
offline phase with high dimensional parameter independent calculations and an online
phase with only low dimensional parameter dependent calculations. Such procedure,
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however, is only possible if the residual Rεµ (and its Fréchet derivatives) allow an affine
parameter decomposition of the following form

Rεµ[v](w) =
Q∑
q=1

aq(µ)Rεq[v](w) (4.3)

with parameter independent residuals Rεq, q = 1, . . . , Q. If such a decomposition is
given, Rεq[v](w) can be computed once with high complexity in an offline phase for all
base function v, w of ΦN , while in the online phase only the coefficients aq have to be
evaluated for the chosen parameter µ and the summation in (4.3) can be evaluated
with low complexity of order O(Q×N2).

Note that for simple linear elliptic problems of type (1.2), (1.3) a decomposition
of the form (4.3) is naturally given, while in more general (in particular nonlinear)
situations, a decomposition of form (4.3) has to be constructed in an approximate
sense which can be achieved by an empirical operator interpolation [10].

A crucial assumption in the construction process of the reduced basis space VN is
that we can define a relatively small finite training set Σtrain that accurately samples
the parameter space P. Such assumption usually restricts the application of the
reduced basis method to moderate dimensions of the parameter spaces with typical
dimensions up to about ten. In our multiscale setting (1.1), however, we also want
to treat the case of parameter functions µ : Ω → Rp, p ∈ N instead of parameter
vectors µ ∈ Rp that can be interpreted as only constant functions in the more general
setting. It is clear that in the general case of parameter functions, one needs additional
structural assumptions on the class of admissible parameter functions. In the context
of multiscale problems, we naturally assume that the parameter functions are smooth
functions on the macroscopic scale, i.e. they can be represented well in UH and that
they are chosen from some compact low dimensional manifold that is embedded in a
high dimensional or even infinite dimensional function space.

5. Model reduction approach for multiscale problems. Let us now focus
on applying the reduced basis approach to our multiscale setting (1.1) including the
generalization to smooth parameter functions µ : Ω → Rp, p ∈ N. The classical
reduced basis approach corresponds to constant parameter functions and is based on
a linear expansion

uεµ,N (x) =
N∑
i=1

aiφi(x), x ∈ Ω (5.1)

where φi ∈ ΦN are basis functions of VN . Hence, the spatial variation of the solution
is represented by the globally defined basis functions only. The principal idea to
generalize the reduced basis approach in our multiscale setting is to replace the linear
combination of reduced basis functions in (5.1) by a suitable generalized nonlinear
combination

uεµ,N = S(φ1, . . . , φN ) (5.2)

with the hope to significantly reduce the number N of reduced basis functions needed
to represent the solution manifold of the underlying parametrized problem.

Particular realizations of this approach are the local reduced basis discontinuous
Galerkin method [23], the localized reduced basis multiscale method [5], and also the
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reduced basis element approach [25] can be seen in this context. Another approach
that fits into this context is the mixed multiscale finite element method using limited
global information [1]. In all these cases the nonlinear combination is chosen as

S(φ1, . . . , φN ) =
N∑
i=1

ai(x)φi(x), (5.3)

where the coefficients ai, i = 1, . . . N are now supposed to be macroscopic functions
that are able to take care of the macroscopic spatial variation of the solution manifold.
Coming back to the notation introduced in Subsection 2, let us assume ai ∈ UH , while
φi ∈ VN ⊂ Uh. The reduced multiscale solution space UH,N is then defined as

UH,N := {uH,N (x) =
N∑
i=1

ai(x)φi(x)|ai ∈ UH , φi ∈ ΦN}. (5.4)

If UH,N is a conforming subset of U , a multiscale reduced solution is immediately
defined as Galerkin projection into this space. This would be for instance the case
for UH ⊂ Uh ⊂ U . A prominent example is obtained, if UH is chosen as a globally
continuous piecewise linear finite element space on a coarse grid TH that is embedded
in a fine grid Th associated with the globally continuous piecewise linear finite element
space Uh. In this case the resulting method can be seen as a particular variant of the
generalized finite element method [8, 27] or an equivalent partition of unity method
[7].

In the most simple case, however, UH is chosen as piecewise constant functions.
As in that case UH,N is non-conforming, a corresponding reduced multiscale approx-
imation can be defined e.g. via discontinuous Galerkin projection. If Uh is chosen as
the globally continuous piecewise linear finite element space corresponding to the fine
grid Th, the resulting method is the local reduced basis discontinuous Galerkin method
[23]. If also Uh is a non-conforming DG space, the resulting method corresponds to
the localized reduced basis multiscale method [5].

As an particular example of the new conceptual approach, let us now present
the local reduced basis discontinuous Galerkin method [23] in more detail where we
assume that UH is chosen as a piecewise constant function space on a coarse mesh
TH . Let us also assume that a localized reduced basis on each coarse grid cell T ∈ TH
is given, i.e. ΦT := {ϕ1

T , . . . , ϕ
NT
T } ⊂ Sh,k(T ) where Sh,k(T ) denotes the restriction of

Uh := Sh,k to the coarse grid cell T . Here Sh,k denotes the globally continuous finite
element space with local polynomials of degree k on a fine mesh Th. In the simplest
form ΦT is obtained from a global reduced basis ΦN by restriction to T . In that case
we have NT = N , but also more localized choices are possible as discussed in Section
6 below. We then define the coarse scale reduced broken space Uh,N by

UH,N = {uH,N ∈ L2(Ω)|uH,N |T ∈ span(ΦT )∀T ∈ TH}

where N = dim(UH,N ) =
∑
T∈TH NT denotes the degrees of freedom of the macro-

scopic discontinuous reduced space. The reduced basis multiscale discontinuous Ga-
lerkin scheme is then defined for the simple model problem (1.2), (1.3) as follows.
Find uH,N ∈ UH,N such that

RDG
ε
µ[uH,N ](vH,N ) = 0, ∀vH,N ∈ UH,N (5.5)
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where the DG residual RDGεµ is e.g. defined as RDGεµ[u] := ADGεµ[u]− Fµ with

ADGεµ[u](v) :=
∑
T∈TH

∫
T

µ1A
ε∇u · ∇ −

∑
e∈E

∫
e

{µ1A
ε∇v · ne}[w]

−
∑
e∈E

∫
e

{µ1A
ε∇w · ne}[v] + Jσ,β(v, w). (5.6)

Here the penalty contribution is given through Jσ,β(v, w) =
∑
e∈E

σ
|e|β

∫
e
[v][w] with

stabilization parameters σ > 0, β > 0. As usual in the context of discontinuous
Galerkin we denote averages across edges as {v}, jumps as [v], and a normal with
defined direction on an edge e ∈ E with ne. For further details and other possible
choices of discontinuous Galerkin methods for elliptic equations we refer to [6].

For an a posteriori analysis of (5.5), (5.6) and a numerical evaluation of its effi-
ciency we refer to [23]. Note that also for this localized reduced basis method the a
posteriori error estimate is used in the reduced basis construction step with a modified
version of the Greedy algorithm introduced in Section 4 above.

A particular difference in the model reduction based approach for multi-scale
problems in comparison to classical numerical multiscale methods, is the multiplica-
tive splitting of macroscopic and fine scale approximation spaces (5.4) instead of an
additive splitting as depicted in (2.3), (2.4). Another difference is the offline/online
splitting, although such ideas could be also incorporated in classical multiscale ap-
proximations. In the next section we will discuss complexity issues in multi-query
scenarios and address the issue of localization in combination with the model reduc-
tion approach for multiscale problems to further reduce computational complexity.

6. Offline versus online computational complexity and localization. De-
pending on the choice of UH and VN in the definition of UH,N , our approach of model
reduction for multiscale problems is able to interpolate between a resolved standard
discretization on a fine grid (UH := Uh, VN := P0) and the classical reduced basis
method (UH := P0, VN as defined in Section 4). It is clear from these extreme scenar-
ios that the optimal choice of a multiscale method in this class depends on the given
multi-query scenario. While the offline complexity is very high in the classical RB
framework, the online complexity is maximal for a standard discretization on a fine
grid. Let us now look at the complexities in more detail. In particular, let us denote
NH := dim(UH), Nh := dimUh , and N := dim(VN ). Then the offline complexity is
of polynomial order in (NNh), while the online complexity is of polynomial order in
(NNH) where we assume that an offline/online decomposition as discussed in Section
4 is possible. As N = 1 for NH = Nh and N = Nmax for NH = 1, the choice of
NH has a direct influence in the ratio between offline and online complexity and thus
can be chosen in dependence of the number of problem evaluations that are expected
in the online phase in the context of a multi-query scenario. For a more detailed
numerical study of actual CPU-times for varying choices of NH we refer to [5] where
such analysis is done for large scale problems in the context of heterogeneous flow in
porous media for the localized reduced basis multiscale method.

In contrast to traditional multiscale methods, our model reduction based ap-
proach requires a certain number of global fine scale solutions in the offline phase.
Such global solutions are also incorporated in traditional multiscale methods (see e.g.
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[1]), but might be relaxed by suitable localization, e.g. in the context of nonlinear
domain decomposition strategies [28, 29, 22]. For model reduction based multiscale
approaches as introduced above, there are also several possibilities for localization. A
first approach relies on an adaptive local coarsening of the reduced space VN which
can be efficiently obtained by an successive application of local POD projections.
Such ideas are investigated in [23, 5]. A second approach would be the usage of clas-
sical localized numerical multiscale methods in the offline construction process of the
reduced basis space or an adaption of nonlinear domain decomposition in this step.
However, to our knowledge such combination of methods has not been presented so
far. Let us summarize, the such additional localization procedures will result in a
further reduction of offline, as well as online computational complexity and will be
subject of further investigations.

Acknowledgment. Support by DFG-grant OH 98/4-2 is gratefully acknowl-
edged.
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[24] M. G. Larson and A. Målqvist. Adaptive variational multiscale methods based on a posteriori
error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl.
Mech. Engrg., 196(21-24):2313–2324, 2007.

[25] Y. Maday and E. M. Rønquist. The reduced basis element method: application to a thermal
fin problem. SIAM J. Sci. Comput., 26(1):240–258, 2004.
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