
Proceedings of ALGORITMY 2012
pp. 261–271

INTERACTION PATTERNS FOR CONCURRENTLY EXECUTED
PARALLEL TASKS

JÖRG DÜMMLER∗

Abstract. Large parallel applications often consist of multiple program parts that can be
implemented separately in form of parallel modules. The interactions between these modules can be
captured by a high-level coordination structure. This coordination structure represents the data flow
within the parallel application and defines restrictions of the execution order of the parallel modules.
The coordination structure of an application can be defined independently of the modules using a
high-level specification language.

This article focuses on possible interactions between concurrently executed parallel modules
that have to exchange data during their execution. For this purpose, several interaction patterns are
considered and their definition in the specification language is illustrated. An experimental evaluation
using different application benchmarks underlines the feasibility of the programming approach and
shows the use of the interaction patterns.

Key words. parallel module, parallel task, pattern, programming model

AMS subject classifications. 68Q85,68U01

1. Introduction. Parallel programming models based on parallel modules lead
to efficient implementations for many large application programs. In these program-
ming models, an application is decomposed into a set of parallel modules where each
module is a parallel code that can run on multiple processors of a parallel target
platform. A coordination structure specifies how the parallel modules of an appli-
cation interact with each other and which dependencies have to be considered for
their execution. For the coordination structure, directed acyclic graphs [8, 15], Macro
Dataflow Graphs (MDGs) [9], and series-parallel (SP) graphs [11] have been used.

These programming models provide several advantages. First, the execution of
such an application can be adapted to the computation and communication perfor-
mance of the parallel target platform. Some of the modules of an application may
require an execution one after another due to data or control dependencies, but other
modules may also be independent of each other and, thus, allow a flexible execution
order, i.e., both, an execution one after another and a concurrent execution on dis-
joint sets of processors are possible. In the case of a concurrent execution, also the
number of processors assigned to each module may be adjusted accordingly. Thus, the
portability of the application performance is increased. Second, the overall commu-
nication overhead of the entire application can often be reduced on platforms with a
distributed memory, since communication and synchronization operations within the
parallel modules can be restricted to subsets of processors. Third, the specification of
an application can be separated from its implementation on a specific parallel plat-
form. The programmer only needs to specify the high-level interactions between the
parallel modules and a software tool or the runtime system is responsible for selecting
a suitable scheduling and mapping to the target platform. Thus, the programmer is
relieved from many low-level implementation details, such as the management of the

∗Chemnitz University of Technology, Department of Computer Science, 09111 Chemnitz, Ger-
many (djo@cs.tu-chemnitz.de).

261



262 J. DÜMMLER

data flow within the application.
Most programming models only support input-output interactions between par-

allel modules. This article focuses on the programming model of communicating
multiprocessor tasks (CM-tasks) which has first been proposed in [4]. The CM-task
programming model additionally supports an interaction between parallel modules
during their execution, e.g., to exchange intermediate results. As a result, the CM-
task model allows a more flexible structuring of an application into modules which
is especially beneficial for time stepping method that require a global data exchange
at the end of each time step. The CM-task model supports several patterns for the
interaction between concurrently executed parallel modules. This article describes a
selection of these patterns that often occur in parallel applications and shows their
specification for a programming tool that supports the development of CM-task pro-
grams.

The rest of this article is organized as follows. Section 2 describes the CM-task
programming model in detail and Sect. 3 presents a corresponding programming sup-
port tool. Section 4 discusses possible interaction patterns for concurrently executed
modules and shows their specification. An experimental evaluation is presented in
Sect. 5. Section 6 discusses related work and Sect. 7 concludes the article.

2. Programming model. A parallel CM-task application is composed of a
set of CM-tasks where each CM-task implements a subset of the computations of
the application. A CM-task is a parallel module that can be executed on a flexible
number of processors. Each CM-task has a specific interface that defines a set of
input parameters that are required for the execution of the CM-task, a set of output
parameters that are produced by the CM-task, and a set of communication parameters
that are exchanged with concurrently executed CM-tasks. Internally, a CM-task may
comprise communication and synchronization operations that are performed by the
processors assigned to the CM-task for execution. Additionally, a CM-task may also
comprise external communication operations that are used to exchange data with
other CM-tasks that are executed concurrently on a disjoint set of processors.

Fig. 2.1. Example for a CM-task
graph with bidirectional edges repre-
senting communication relations (an-
notation C) and directed edges repre-
senting precedence relations (annota-
tion P).

The programming model distinguishes basic
and composed CM-tasks. Basic CM-tasks are pro-
vided by the application developer and are not
decomposed further. These can be parallel func-
tions or library routines, e.g., for the multiplica-
tion of two matrices. Composed CM-tasks con-
sist of activations of other CM-tasks and a coordi-
nation structure that defines the interactions be-
tween these CM-task activations. The interactions
are captured by two types of relations: precedence
relations (P-relations) and communication rela-
tions (C-relations). A P-relation exists between
two CM-tasks A and B if A produces an output
parameter that is required as an input for B. In
this case, A and B have to be executed one af-
ter another. Moreover, in the case of a distributed
memory target platform, a data re-distribution op-
eration may be required between the execution of A and B. Such an operation is
necessary if A and B are executed on different sets of processors or if the output data



INTERACTION PATTERNS FOR CONCURRENTLY EXECUTED... 263

Application Developer

CM-task Compiler Framework

Specification

Program

Platform

Description

Coordination

Program

(C+MPI)

CM-task

Compiler

Data 

Re-distribution

Library

Load

Balancing

Library

CM-task

Implementations

Fig. 3.1. Overview of the CM-task framework.

distribution of A and the input data distribution of B do not match. A C-relation ex-
ists between two CM-tasks A and B if A and B communicate with each other during
their execution, e.g., to exchange intermediate results. In this case, A and B have to
be executed concurrently on disjoint sets of processors. Independent CM-tasks, i.e.,
CM-tasks not connected by a P-relation or a C-relation, can be executed one after
another or concurrently.

A composed CM-task can be represented by a CM-task graph G = (V,E) where
the set V of nodes represents the CM-task activations. The set E of edges comprises
two disjoint subsets EP and EC with E = EP ∪ EC and EP ∩ EC = ∅. EP contains
directed edges representing the P-relations and EC contains bidirectional edges repre-
senting the C-relations between the CM-task activations. An example for a CM-task
graph is shown in Fig. 2.1.

3. Programming support. This sections discusses the CM-task framework
that provides tool support for the development of CM-task programs.

3.1. CM-task framework. The CM-task framework provides support for the
specification of CM-task applications, the transformation of an application specifica-
tion into a platform-specific implementation, and runtime support for the execution
of CM-task applications. An overview of the CM-task framework is shown in Fig. 3.1.

For the framework, the user has to provide
• the high-level interactions between the CM-tasks of the application in form of

a platform-independent specification program, see Subsect. 3.2 for a detailed
description of the underlying specification language;

• the properties of the parallel target platform, such as the number of available
processors and the communication and computation performance;

• implementations of the basic CM-tasks in form of parallel functions.
The CM-task compiler transforms the user-provided application specification and

platform description into an executable coordination program that is adapted to the
target platform specified. The transformation process includes the construction of the
CM-task graph from the specification program, the scheduling of the CM-task graph
for the target platform, the insertion of the required data re-distribution operations,
and the generation of the final coordination program. The coordination program pro-
duced is responsible for the execution of the CM-tasks on the processor sets defined
by the computed schedule, the execution of the data re-distribution operations re-
sulting from P-relations between CM-tasks using a runtime library, and the provision



264 J. DÜMMLER

M → seq { M1M2 . . . Mn } /* consecutive execution */
| par { M1M2 . . . Mn } /* independent computations */
| for (i = 1 : n) { M1 } /* loop with data dependencies */
| while (cond)#It { M1 } /* loop with data dependencies */
| parfor (i = 1 : n) { M1 } /* loop with independent iterations */
| if (cond) { M1 } /* conditional execution */
| if (cond) { M1 } else { M2 } /* conditional execution */
| C

C → BC (a1, . . . , an); /* execution of a basic CM-task */
| CC (a1, . . . , an); /* execution of a composed CM-task */
| cpar { C1C2 . . . Cn } /* concurrent execution */
| cparfor (i = 1 : n) { C1 } /* concurrent execution of iterations */

Fig. 3.2. Grammar for the specification of the available task parallelism within a composed
CM-task (simplified).

of a common communication context for CM-tasks connected by C-relations. The
execution of the data transfers along the C-relations is not part of the coordination
program and has to be implemented inside the user-provided parallel functions.

The CM-task compiler supports two modes for the generation of the coordination
program. In the static mode, the scheduling is done entirely at compile-time leading
to a more optimized coordination program. In the semi-dynamic mode, only the
execution order of the CM-tasks is fixed at compile time. The processor sets used to
execute the CM-tasks are flexible and can be adapted at runtime by the load balancing
library provided within the CM-task framework.

3.2. Specification language. CM-task specification programs describing the
platform-independent details of a parallel application are provided in the CM-task
specification language. The language supports definitions of constants, data types,
e.g., multidimensional arrays, data distribution types, e.g., block-cyclic data distri-
butions over multidimensional processor meshes, basic CM-tasks, and composed CM-
tasks. The definition of a basic CM-task consists of the interface and cost information.
The interface defines the input, output and communication parameters along their
associated data types and data distribution types. The cost information is provided
in form of a symbolic formula depending on the number of executing processors and
platform-specific parameters that are provided independently in a separate platform
description input file.

The definition of a composed CM-task consists of an interface as for basic CM-
tasks, a list of local variables used to store intermediate results, and a hierarchical
dependence expression, see Fig. 3.2 for the underlying grammar. The dependence
expression consists of activations of basic and composed CM-tasks that are defined
using the name of the CM-task and a suitable parameter list, and a variety of operators
to define possible execution orders of these CM-task activations. The operators cpar
and cparfor define a concurrent execution of multiple CM-tasks. These CM-tasks
are connected by C-relations if they share a common communication parameter. The
operators seq, for, and while define a consecutive execution of program parts. In
this case, P-relations may exist between these program parts. Independent program
parts are defined using the operators par and parfor. In this case, no interaction
between these parts in form of P-relations or C-relations is allowed. The conditional
execution of program parts can be defined using the operator if.



INTERACTION PATTERNS FOR CONCURRENTLY EXECUTED... 265

4. Interaction patterns. This section presents several patterns for the interac-
tion between concurrently executed CM-tasks. A specification of an entire application
may contain several of these patterns embedded in the specification program.

C1 C2

x

a

db

c cpar {

C1(a/* in */, b/* out */, x/* comm */);

C2(c/* in */, d/* out */, x/* comm */);

}

Fig. 4.1. (Left) Fragment of a CM-task graph for the point-to-point communication pattern.
(Right) Corresponding fragment of the CM-task specification program. The access modes of the
parameters (in, out, comm) are given as comments.

4.1. Point-to-point pattern. The basic communication pattern is an interac-
tion of two CM-tasks that are executed concurrently by disjoint sets of processors.
This kind of communication can be used to provide input data or exchange intermedi-
ate results in large multi-disciplinary applications combining algorithms from different
fields, e.g., aircraft design or environmental simulations. This communication pattern
captures both, a directed data transfer from a CM-task A to a CM-task B as well as a
bidirectional data exchange where A transmits data to B and vice versa. Both cases
are modeled by a C-relation between the respective CM-tasks. The point-to-point
pattern is specified by combining the CM-task activations using the operator cpar
and providing a common communication parameter to these CM-tasks. Figure 4.1
shows an illustration and an example specification fragment for this pattern.

4.2. Pipeline pattern. The pipeline pattern uses a fixed number of stages
where each data element has to pass all pipeline stages one after another. This
pattern occurs, for example, in stream-based applications, such as programs process-
ing data periodically produced by sensors [12], image analysis programs, and graphics
renderers where autonomous filters have to be applied [6]. For a specific data element
an interaction is required between successive pipeline stages. The stages have to be
executed consecutively for a specific element, but a concurrent execution is possible
for different data elements.

C1

x
2

x
1

x
r−1

Cr

a
1

b
1

b
2

C2

a
2

b
r

a
r

...

cpar {

C1(a1/* in */,b1/* out */,x1/* comm */);

C2(a2/* in */,b2/* out */,x1 ,x2/* comm */);

C3(a3/* in */,b3/* out */,x2 ,x3/* comm */);

...

Cr(ar/* in */,br/* out */,xr1/* comm */);

}

Fig. 4.2. (Left) Fragment of a CM-task graph showing a pipeline with r stages. (Right) Cor-
responding fragment of the CM-task specification program.

In the CM-task model, each pipeline stage is represented by a separate CM-
task. The required data transfers between neighboring stages are modeled by a C-
relation between the respective CM-tasks. In the specification program, a pipeline
can be specified by combining the CM-tasks representing the pipeline stages with
the operator cpar. The data transfers between neighboring stages are specified by
providing a suitable communication parameter to the respective CM-tasks. As a



266 J. DÜMMLER

consequence, each CM-task (except the CM-tasks representing the first and the last
pipeline stage) needs two communication parameters. An example specification and
the corresponding fragment of the CM-task graph are shown in Fig. 4.2.

4.3. Master/worker pattern. In the master/worker pattern, there is a distin-
guished master that coordinates the execution and distributes work units to a set of
identical workers. Each worker carries out the computations assigned independent of
the other workers and delivers the results back to the master. In hierarchical appli-
cations, each processed piece of work can introduce new work units. In this case, the
master can utilize a task pool to manage the currently available work units. Usually,
the master and each of the workers are executed by a single processor. But it might
also be beneficial to support an execution of the workers on multiple processors if the
number of available processors exceeds the average number of work units in the task
pool or the underlying algorithm has a high memory requirement.

x
1

x
n

x
2

...

M

a

b

1

2

n

W

W

W

cpar {

M(a/* in */, b/* out */,

x[1],...,x[n]/* comm */);

c p a r f o r (i=1:n) { W(x[i]/* comm */); }

}

Fig. 4.3. (Left) Fragment of a CM-task graph for the master/worker pattern. (Right) Corre-
sponding fragment of the CM-task specification program.

In the CM-task model, the master and each of the n workers are represented by
a separate CM-task, leading to n+ 1 CM-tasks for this pattern. There is a C-relation
between the master and each of the workers, leading to a total of n C-relations. There
is no communication between different workers and, therefore, there are no relations
between the respective CM-tasks. Figure 4.3 shows an illustration of the pattern along
with an example specification.

4.4. Mesh pattern. In the mesh pattern, a set of CM-task is aligned in a multi-
dimensional mesh where each CM-task communicates with its neighbors, see Fig. 4.4
(left) for an illustration. This pattern can be useful for domain decomposition meth-
ods that partition the global discretization mesh into a set of partially overlapping
zones. Between adjacent zones, an exchange of border values may be required for
these methods. Examples for such applications are flow solvers as provided by the
NAS Multi-zone benchmarks [13], see Sect. 5.2 for benchmark results.

Figure 4.4 shows the CM-task graph fragment and a suitable CM-task specifi-
cation for a two-dimensional mesh. The input and output parameters have been
omitted to improve readability. Each CM-task has four communication parameters,
since there are four neighbors in the two-dimensional case. Each of the communica-
tion parameters of a specific CM-task is shared with exactly one neighbor. In the
specification example, the communication parameter x is used to connect horizontal
neighbors and the communication parameter y connects vertical neighbors.

4.5. Collective pattern. The patterns discussed previously are restricted to
data exchanges between pairs of CM-tasks. The CM-task model also supports an
interaction between more than two concurrently executed CM-tasks, i.e., a collective
interaction. Such an interaction is necessary when an intermediate result produced by



INTERACTION PATTERNS FOR CONCURRENTLY EXECUTED... 267

0,0 0,1

x
0,0

x
0,1

1,0 1,1

x
1,0

x
0,n−2

n−1
0,

n−1
1,

x
1,1

m−1,
0

m−1,
1

m−1,
n−1

x
m−1,1

y
1
,0

y
0
,0

y
0
,1

y
1
,1

x
m−1,0

y
m
−
2
,1

y
m
−
2
,0

x
1,n−2

y
0
,n
−
1

y
1
,n
−
1

y
m
−
2
,n
−
1

x
m−1,n−2

x
0,n−1

x
1,n−1

x
0,n−1

x
1,n−1

x
m−1,n−1

x
m−1,n−1

y
m
−
1
,0

y
m
−
1
,0

y
m
−
1
,1

y
m
−
1
,1

y
m
−
1
,n
−
1

y
m
−
1
,n
−
1

...

...

...

...

...

c p a r f o r (i=0:m-1) {

c p a r f o r (j=0:n-1) {

C(i, j/* in */,

x[i][j]/* comm , right */,

y[i][j]/* comm , bottom */,

x[i][(j-1)%n]/* comm , left */,

y[(i-1)%m][j]/* comm , top */);

}

}

Fig. 4.4. (Left) Illustration of the mesh pattern using a two-dimensional m× n mesh. (Right)
Corresponding fragment of the CM-task specification program.

a CM-task is required by multiple other CM-tasks or has to be made available globally.
An example are the orthogonal communication operations that exist in many solvers
for ordinary differential equations [10], see also the application benchmarks considered
in Subsect. 5.1.

CnC1

a1 a2 an

b1 b2

C2

bn

...
x x x

c p a r f o r (i=1:n) {

C(i, a[i]/* in */,

b[i]/* out */,

x/* comm */);

}

Fig. 4.5. (Left) Fragment of the CM-task graph for a collective interaction of n CM-tasks.
(Right) Corresponding fragment of the CM-task specification program.

Figure 4.5 illustrates the specification of a collective interaction of n identical
CM-tasks and the resulting fragment of the CM-task graph. If the CM-tasks are not
identical the operator cpar instead of cparfor has to be used to specify this pattern.
In both cases, all CM-tasks participating in the collective data exchange have to define
the same communication parameter.

5. Experimental evaluation. This section evaluates the collective pattern and
the mesh pattern using appropriate application benchmarks. The benchmarks have
been executed on the Chemnitz High Performance Linux (CHiC) cluster. This cluster
is built up of 530 nodes each comprising two AMD Opteron 2218 dual-core processors
with a clock rate of 2.6 GHz. The peak performance of a single core is 5.2 GFlops/s
The nodes are interconnected by a 10 GBit/s Infiniband network. MVAPICH 1.0.3 has
been used as an MPI library and the Pathscale Compiler 3.1 with full optimizations
has been used to compile the benchmark programs.

5.1. Evaluation of the collective pattern. There exist several solvers for
systems of ordinary differential equations (ODEs) that perform a large number of time



268 J. DÜMMLER

20000 180000 320000 500000 720000 980000
0

0.5

1

1.5

2

2.5

3

ODE system size

ti
m

e
 p

e
r 

s
te

p
 i
n
 s

e
c
.

IRK+PABM methods for BRUSS2D on CHiC (256 Cores)

 

 

IRK method (K=4) data parallel

IRK method (K=4) task parallel (parallel tasks)

IRK method (K=4) task parallel (CM−tasks)

PABM method (K=8) data parallel

PABM method (K=8) task parallel (parallel tasks)

PABM method (K=8) task parallel (CM−tasks)

64 128 192 256 384 512 640 768 896 1024
0

50

100

150

200

250

300

350

400

450

Cores

S
p

e
e

d
u

p

IRK (K=4) for SCHROED (n=120002) on CHiC

 

 

data parallel

task parallel (parallel tasks)

task parallel (CM−tasks)

Fig. 5.1. Benchmark results for ODE solvers using the collective communication pattern.

steps one after another where each time step includes the evaluation of a fixed number
K of stage vectors. The computations for these vectors are usually not independent
from each other, but require an exchange of intermediate results between all K vectors.
These data exchanges can be implemented using orthogonal communication to reduce
the communication overhead [10]. Examples for such solvers are Iterated Runge-
Kutta (IRK) methods and Parallel Adams-Bashforth-Moulton (PABM) methods. In
the CM-task model, each stage vector can be computed by a separate CM-task and
the data exchanges can be modeled using appropriate C-relations according to the
collective interaction pattern, see Subsect. 4.5.

For the benchmarks, three different implementations are considered. The data
parallel version computes the K stage vectors one after another using all processors.
The task parallel version with parallel tasks computes the K vectors concurrently and
exchanges the intermediate results using global communication. This corresponds
to an implementation in a model that only supports input-output relations. The
task parallel version with CM-tasks also computes all vectors concurrently, but uses
orthogonal communication for the data exchanges. Figure 5.1 (left) shows the average
execution times for a single time step for an ODE system that results from the spatial
discretization of the 2D Brusselator equation (BRUSS2D) [5]. The results show a
tremendous decrease of the execution time by using the optimized communication
pattern supported by CM-tasks. Figure 5.1 (right) shows the speedups for an ODE
system resulting from the Galerkin approximation of a Schrödinger-Poisson system
(SCHROED). The CM-task implementation shows a much better scalability than the
other implementation variants.

5.2. Evaluation of the mesh pattern. The NAS-MZ parallel benchmarks [13]
provide several solvers for flow equations defined over a three-dimensional discretiza-
tion mesh that is partitioned into zones. One time step of these solvers first performs
independent computations for each zone followed by a border exchange between neigh-
boring zones. In the CM-task model, one zone or multiple neighboring zones can be
implemented by a CM-task. The resulting CM-tasks then interact with each other in
form of a mesh, see Subsect. 4.4.

The LU-MZ benchmark defines a 4 × 4 mesh of equal-sized zones. Figure 5.2
(left) compares the overall performance of a pure data parallel implementation that
computes all zones one after another using all available processor and a CM-task
implementation where each zone is implemented by a separate CM-task. Benchmark
classes C (global mesh size 480×320×28) and D (global mesh size 1632×1216×34)



INTERACTION PATTERNS FOR CONCURRENTLY EXECUTED... 269

64 96 128 192 256 320 384 448 512 640 768 896
0

100

200

300

400

500

600

number of processor cores

to
ta

l 
p
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
s
/s

LU−MZ benchmark on CHiC

 

 

data parallel class C

task parallel (16 CM−tasks) class C

data parallel class D

task parallel (16 CM−tasks) class D

256 384 512 640 768 896 1024
0

50

100

150

200

250

300

350

number of processor cores

to
ta

l 
p
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
s
/s

SP−MZ benchmark (class D) on CHiC

 

 

task parallel (4 CM−tasks)

task parallel (16 CM−tasks)

task parallel (64 CM−tasks)

task parallel (256 CM−tasks)

task parallel (1024 CM−tasks)

Fig. 5.2. Benchmark results for different implementation variants of the LU-MZ benchmark
(left) and the SP-MZ benchmark (right) on the CHiC cluster.

have been used. The results show that the data parallel version is more efficient on a
low number of processors, since the border exchanges can be performed locally without
communication. But for a high number of processors, a concurrent computation of
the individual zones on disjoint sets of processors as supported by the CM-task model
is required for a high performance.

The SP-MZ benchmark class D defines a 32× 32 mesh of equal-sized zones. Fig-
ure 5.2 (right) compares the performance for different numbers of CM-tasks. The
results show that an implementation with 64 CM-tasks where each CM-tasks com-
putes 16 zones leads to the highest performance.

6. Related work. Several programming models based on parallel modules have
been proposed. Paradigm [9] is a parallelizing compiler that extracts a task graph from
a source program with additional annotations, schedules the task graph for a specific
parallel platform and produces a parallel implementation as an output. The TwoL
system [11] includes a specification language to define the available degree of task
parallelism of an application and uses a transformation-based approach to translate
a given specification into a platform-specific implementation. In contrast to the CM-
task model, communication relations between concurrently executed parallel modules
are not supported by these approaches.

Interaction patterns between parallel program fragments can also be specified
using skeletons. P3L [7] is a coordination language for skeletons that supports both,
data parallel patterns, such as map, reduce and scan as well as task parallel patterns,
such as pipelines and task farms. TaskHPF [1] includes a special language to describe
the high-level task parallel interactions. The available skeletons allow the definition
of pipeline-based computations and the replication of pipeline stages with a low scal-
ability. LLC [3] extends C with OpenMP-like annotations to define different patterns,
such as pipelines and master/worker schemes. ASSIST [14] is a framework for the
composition of sequential and parallel modules to complex applications. The interac-
tions between the modules are described in a coordination language in form of a task
graph. SBASCO [2] is a pattern-based coordination language to define domain decom-
position methods. It supports the multiblock-pattern for the definition of different
domains that interact with each other using border exchanges, the pipeline-pattern,
and the replicate-pattern to define multiple instances of a specific program part. In
contrast to the CM-task model, there are special operators for each supported pattern.
To support additional patterns, the input language has to be extended accordingly.



270 J. DÜMMLER

In contrast, the operators of the CM-task specification language only define possible
execution orders of program fragments. The concrete interactions are defined using
suitable input, output, and communication parameters. Thus, a large variety of dif-
ferent patterns can be defined without modifying the language or the corresponding
programming support tools.

7. Conclusion. This article has discussed the programming model of communi-
cating multiprocessor tasks (CM-tasks). This model supports two types of interactions
between parallel modules: precedence relations resulting from input-output depen-
dencies and communication relations resulting from an interaction between parallel
modules during their execution. The development of CM-task programs is supported
by the CM-task framework that transforms a platform-independent specification of
the application structure into a platform-specific implementation based on the char-
acteristics of the target platform.

The article has also discussed several different patterns for the interaction be-
tween CM-tasks connected by communication relations. In particular, patterns for
a point-to-point interaction, for pipeline-based computations, for master/worker par-
allelization approaches, for mesh-based computations, and for collective interactions
have been presented. For each pattern, a corresponding CM-task specification has
been shown. The experimental evaluation has indicated that CM-task implementa-
tions can result in a higher parallel performance compared to other execution schemes.

REFERENCES

[1] S. Ciarpaglini, L. Folchi, S. Orlando, S. Pelagatti, and R. Perego. Integrating Task and Data
Parallelism with taskHPF. In Proc. of the International Conference on Parallel and Dis-
tributed Techniques and Applications (PDPTA ’00), pages 2485–2491. CSREA Press, 2000.

[2] M. Dı́az, B. Rubio, E. Soler, and J.M. Troya. SBASCO: Skeleton-Based Scientific Components.
In Proc. of the 12th Euromicro Workshop on Parallel, Distributed and Network-Based
Processing (PDP ’04), pages 318–325. IEEE, 2004.

[3] A.J. Dorta, P. López, and F. de Sande. Basic Skeletons in llc. Parallel Computing, 32(7-8):491–
506, 2006.

[4] J. Dümmler, T. Rauber, and G. Rünger. Communicating Multiprocessor-Tasks. In Proc. of the
20th International Workshop on Languages and Compilers for Parallel Computing (LCPC
’07), volume 5234 of LNCS, pages 292–307. Springer-Verlag, 2007.

[5] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer-Verlag, Berlin Heidelberg New York, 2nd edition, 1993.

[6] J.L. Ortega-Arjona. Patterns for Parallel Software Design. Wiley Publishing, 1st edition, 2010.
[7] S. Pelagatti and D.B. Skillicorn. Coordinating Programs in the Network of Tasks Model.

Journal of Systems Integration, 10(2):107–126, 2001.
[8] A. Radulescu, C. Nicolescu, A.J.C. van Gemund, and P. Jonker. CPR: Mixed Task and Data

Parallel Scheduling for Distributed Systems. In Proc. of the 15th International Parallel &
Distributed Processing Symposium (IPDPS ’01), pages 39–46. IEEE, 2001.

[9] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A Framework for Exploiting Task and Data
Parallelism on Distributed Memory Multicomputers. IEEE Transactions on Parallel Dis-
tributed Systems, 8(11):1098–1116, 1997.

[10] T. Rauber, R. Reilein-Ruß, and G. Rünger. Group-SPMD Programming with Orthogonal
Processor Groups. Concurrency and Computation: Practice and Experience, Special Issue
on Compilers for Parallel Computers, 16(2-3):173–195, 2004.

[11] T. Rauber and G. Rünger. A Transformation Approach to Derive Efficient Parallel Implemen-
tations. IEEE Transactions on Software Engineering, 26(4):315–339, 2000.

[12] J. Subhlok and B. Yang. A new model for integrated nested task and data parallel programming.
In Proceedings of the sixth ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 1–12. ACM Press, 1997.

[13] R.F. van der Wijngaart and H. Jin. The NAS Parallel Benchmarks, Multi-Zone Versions.
Technical Report NAS-03-010, NASA Ames Research Center, 2003.



INTERACTION PATTERNS FOR CONCURRENTLY EXECUTED... 271

[14] M. Vanneschi. The Programming Model of ASSIST, an Environment for Parallel and Dis-
tributed Portable Applications. Parallel Computing, 28(12):1709–1732, 2002.

[15] N. Vydyanathan, S. Krishnamoorthy, G. Sabin, Ü.V. Çatalyürek, T.M. Kurç, P. Sadayappan,
and J.H. Saltz. An Integrated Approach to Locality-Conscious Processor Allocation and
Scheduling of Mixed-Parallel Applications. IEEE Transactions on Parallel and Distributed
Systems, 20(8):1158–1172, 2009.


