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A REDUCED BASIS METHOD FOR PARAMETER OPTIMIZATION
OF MULTISCALE PROBLEMS

MARIO OHLBERGER ∗ AND MICHAEL SCHAEFER∗

Abstract. Many natural or technical processes can be described by parameterized partial differ-
ential equations (P2DEs) that include different length-scales. Typical applications include parameter
studies or optimal control where the model has to be solved for a huge variety of different parame-
ters resulting in enormous computational times for classical discretization techniques. The reduced
basis method was introduced to overcome this problem. The aim of this contribution is to extend
the reduced basis methodology to optimization problems that are constrained by a parameterized
multiscale problem. We introduce the methodoly in detail and give numerical experiments that
demonstrate the efficiency of the model reduction approach in multiscale optimization problems.
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1. Introduction. Reduced basis methods (RBM) [11] are model order reduction
techniques originally developed for parameterized partial differential equations. Main
fields of application are the real-time context where the solution for a given parameter
configuration has to be calculated quasi instantaneous, and the multi-query context
where the problem has to be solved repeatedly for different parameters. Examples
are parameter studies, inverse problems or optimal control.

Although developed already in the 1980’s, major progress in RBM has been made
during the last decade where the methodology was accomplished with rigorous a pos-
teriori error analysis that is used both, in the construction process of the reduced
models, and for computing error bounds for the reduced model with respect to an un-
derlying traditional high dimensional finite element, finite volume or finite difference
approximation. Starting with elliptic equations [11], the methodology was extended
to parabolic [5] and general evolution equations [6]. All these works dealt with linear
equations and assumed an affine parameter dependence that allows an efficient of-
fline/online decomposition of the resulting reduced schemes. Over the last years new
techniques were introduced to handle more general problems, namely the empirical
interpolation [1] for non-affine data functions and the empirical operator interpolation
[3] for general nonaffine, nonlinear differential operators. Latest results include the
treatment of nonlinear, instationary systems [2, 4] and variational inequalities [7].

Applications of the RBM to optimization problems have been studied in [10]. The
aim of this paper is to extend the ideas presented there to the following multiscale
optimization setting:

Find µ∗ = arg min J(u(µ), µ)
subject to Cj(u(µ), µ) ≤ 0 ∀j = 1, . . . , N,

µ ∈ P

 (1.1)

with a compact parameter set P ⊂ RP . In (1.1), the state variable u(µ) = uε(µ) is
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solution of the following (parameterized) multiscale problem:

−∇ · (Aε(x;µ)∇uε(x;µ)) = f(x;µ) (x ∈ Ω)
uε(x;µ) = 0 (x ∈ ∂Ω)

}
(1.2)

Here, Ω ⊂ Rd is a bouded domain, and the diffusion tensor is assumed to be rapidly
oscillating: Aε(·;µ) =

(
aεij(·;µ)

)d
i,j=1

, where aεij(·;µ) := aij(·/ε;µ) for Y -periodic

functions aij(·;µ) ∈ L∞(Y ) with the reference cell Y := (0, 1)d. To have a more
compact notation, we will also use the abbreviation uε(µ) := uε(·;µ). Analogue
expressions will be used for all functions depending on space and parameter.

There is a huge variety of numerical algorithms to solve general optimization
problems such as (1.1), see for example [13]. Since neccessary and sufficient conditions
for local optima include derivatives of first and second order of the involved functions,
most algorithms make use of these quantities. In this regard it is clear that we will
not only need RB approximations for the state variable uε(µ) itself, but also for the
derivatives with respect to the parameter µ.

The rest of this paper is organized as follows: In Section 2 we will shortly recall
results from homogenization theory that will allow us to replace uε(µ) by its macro-
scopic approximation u0(µ). Section 3 is devoted to the definition and discussion of
a reduced basis multiscale approximation of (1.1). Finally, in Section 4 we present
numerical experiments that demonstrate the applicability and efficiency of our model
reduction approach for multiscale optimization problems.

2. Homogenization. The length-scale ε in problem (1.2) is typically very small,
i.e. ε� |Ω|. Thus, an approximation of the optimization problem with classical dis-
cretization techniques is extremely expensive, since the underlying grids must resolve
the fine scale ε. The idea of homogenization is to study properties of a sequence uε

in the limit ε→ 0. The main homogenization result for our approach is the following
theorem (cf. [12]) which gives an explicit description of the limit u0:

Theorem 2.1. Let µ ∈ P be fix and uε(µ) the solution of (1.2). If Aε(µ) is
continuous and uniformly elliptic, and f(µ) ∈ H−1(Ω), then

1. uε(µ)→ u0(µ) weakly in H1
0 (Ω) and

2. Aε(µ)∇uε(µ)→ A0(µ)∇u0(µ) weakly in
(
L2(Ω)

)d.
Here, A0(µ) ∈ Rd×d is a constant matrix, and the limit u0(µ) ∈ H1

0 (Ω) solves the
homogenized problem

−∇ ·
(
A0(µ)∇u0(µ)

)
= f(µ) in Ω

u0(µ) = 0 on ∂Ω

}
(2.1)

An explicit expression for the effective tensor A0(µ) can also be derived. To that
end we introduce the cell problems

−∇ ·
(
At(y;µ)∇χk(y;µ)

)
= −∇ ·

(
At(y;µ)ek

)
in Y

χk(y;µ) is Y -periodic∫
Y

χk(y;µ) dy = 0

 (2.2)
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with ek ∈ Rd being the k-th canonical basis vector. Then, A0(µ) = (a0
ij(µ))di,j=1

satisfies

a0
ij(µ) =

∫
Y

At(y;µ)
(
ei −∇χi(y;µ)

)
·
(
ej −∇χj(y;µ)

)
dy. (2.3)

2.1. Weak formulation. Instead of (2.1) and (2.2) we work with corresponding
weak formulations. Let C∞# (Y ) be the subspace of Y -periodic functions of C∞(Rd).
We define the space H1

#(Y ) as the closure of C∞# (Y ) w.r.t. the H1(Y )-Norm. With
the (bi-)linear forms

AY (u, v;µ) :=
∫
Y

At(µ)∇u · ∇v dy,

FY,k(v;µ) :=
∫
Y

At(µ)ek · ∇v dy,

A(u, v;µ) :=
∫

Ω

A0(µ)∇u · ∇v dx,

F(v;µ) :=
∫

Ω

f(µ)ϕ dx,

the weak solutions χk(µ) ∈ H1
#(Y ) of (2.2) and u0(µ) ∈ H1

0 (Ω) of (2.1) are then given
by

AY (χk(µ), ψ;µ) = FY,k(ψ;µ) ∀ψ ∈ H1
#(Y ), (2.4)

A(u0(µ), ϕ;µ) = F(ϕ;µ) ∀ϕ ∈ H1
0 (Ω). (2.5)

Finally, the effective tensor A0(µ) can be written as (cf. (2.3))

a0
ij(µ) = AY (yi − χi(µ), yj − χj(µ)). (2.6)

3. Reduced Basis Method. As a first step towards model reduction we replace
all occurances of the fine-scale solution uε by its homogenized limit u0. In order to
derive a reduced scheme for (1.1) we need reduced basis approximations for u0(µ)
and its parameter derivatives. Since the weak formulation (2.5) includes the effective
tensor A0(µ) we will also need RB approximations of the cell problems χk(µ), cf.
equation (2.6).

The structure of this section is as follows: In 3.1, the reduced approximations
for all neccessary quantities (including parameter derivatives) are introduced, while
in 3.2 we discuss a possible offline-online splitting of the computational load for all
involved quantities. Finally, Subsection 3.3 puts all the pieces together and concludes
with a reduced scheme for the optimization problem (1.1).

3.1. RB approximations. For the (finite) sample sets S,SkY ⊂ P we define
the reduced basis spaces

Wk
N,Y := span

{
χk(µ) | µ ∈ SkY

}
= span

{
ψk1 , . . . , ψ

k
NY (k)

}
,

WN := span
{
u0(µ) | µ ∈ S

}
= span {ϕ1, . . . , ϕN} ,

with χk(µ), u0(µ) as in (2.4), (2.5). Besides, N := dim(WN ), NY (k) := dim(Wk
N,Y )

and {ψkj }
NY (k)
j=1 , {ϕj}Nj=1 are orthonormal bases.1

1In actual simulations the basis functions have of course to be replaced by discrete approximations
(via FEM, FV or other) of reasonably high dimension. This fact will be ignored in the further
presentation.
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The RB approximation χkN (µ) ∈ Wk
N,Y is now defined as the Galerkin projection

of (2.1) onto Wk
N,Y :

AY (χkN (µ), ψ;µ) = FY,k(ψ;µ) ∀ψ ∈ Wk
N,Y (3.1)

With coefficient vectors αk(µ) ∈ RNY (k) we have the basis representations χkN (µ) =∑NY (k)
i=1 αki (µ)ψki . In a natural way we choose for the RB approximation of A0(µ):

A0
N (µ) = (aN,i,j(µ))di,j=1 with

aN,i,j(µ) := AY (yi − χiN (µ), yj − χjN (µ);µ). (3.2)

The defining equation for u0(µ) contains the tensor A0(µ) which is not available in
classical reduced simulations. To get the RB approximation for u0

N (µ) we thus replace
A0(µ) by A0

N (µ): With a new bilinear form

AN (u, v;µ) :=
∫

Ω

A0
N (µ)∇u · ∇v dx,

we choose u0
N ∈ WN as solution of

AN (u0
N (µ), ϕ;µ) = F(ϕ;µ) ∀ϕ ∈ WN . (3.3)

The corresponding basis representation will be denoted by u0
N (µ) =

∑N
i=1 βi(µ)ϕi.

3.1.1. Parameter derivatives. As stated in the introduction, derivatives of
u0
N (µ) with respect to parameters are neccessary for the optimization procedure. To

compute such derivatives, we differentiate the defining equation (3.3) with respect to
µi. Thus, we get the following weak formulation for ∂µi

u0
N (µ):

AN (∂µi
u0
N (µ), ϕ;µ) = ∂µi

F(ϕ;µ)− ∂µi
AN (u0

N (µ), ϕ;µ) ∀ϕ ∈ WN . (3.4)

A closer look at the third term reveals that since AN includes the effective tensor
A0
N (µ), we must provide parameter derivatives of it. The proof of corollary 3.2 below

shows that to this end it is sufficient to have the corresponding derivatives of the
cell problems. These are defined in the same manner as those for the u0

N (µ), i.e. by
deriving the defining equation (3.1) which results in

AY (∂µi
χkN (µ), ψ;µ) = ∂µi

FY,k(ψ;µ)− ∂µi
AY (χkN (µ), ψ;µ) ∀ψ ∈ Wk

N,Y . (3.5)

Higher order derivatives can be specified by further differentiation of (3.5).

3.2. Offline-online splitting. In the previous section we defined RB approx-
imations for u0(µ) and the corresponding cell problems. The calculation of these
approximations still involves the integration of high-dimensional data, namely the
basis functions ϕi. To overcome this problem we make the following assumption:
The diffusion tensor A(x;µ) and the source term f(x;µ) in (1.2) allow affine pa-
rameter decompositions, i.e. for QA, Qf ∈ N and functions σqA, σ

q
f : P → R,

Aq : Rd → Rd×d, fq : Rd → R it holds

A(x;µ) =
QA∑
q=1

σqA(µ)Aq(x),

f(x;µ) =
Qf∑
q=1

σqf (µ)fq(x),
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both for all x ∈ Rd, and µ ∈ P. Note that σqA, σ
q
f depend on the parameter but not

on the spatial variable, while Aq, fq are parameter independent. As can be easily
seen, this implies affine decompositions for the bilinear form AY and right hand
side FkY in (2.4) as well as for F in (2.5). We will denote these decompositions as

AY (u, v;µ) =
∑QAY
q=1 σqAY

(µ)AqY (u, v), FkY (v;µ) =
∑QFk

Y
q=1 σqFk

Y

(µ)Fk,qY (v) and F(v) =∑QF
q=1 σ

q
F (µ)Fq(v).

Proposition 3.1. For k = 1, . . . , d, the coefficient vector αk(µ) of χkN (µ) is the
solution of [

QA∑
q=1

σqA(µ)Ak,q
Y

]
αk(µ) =

QA∑
q=1

σqA(µ)Fk,q
Y (3.6)

with

Ak,q
Y = {AqY (ψki , ψ

k
j )}NY (k)

i,j=1 , Fk,q
Y = {Fk,qY (ψi)}NY (k)

i=1 .

Proof. The proof is straight forward. It uses the basis representation of χkN (µ),
the affine decompositions of AY and FkY , and the fact that in (3.1) it is sufficient to
test with the basis functions ψkj .

Corollary 3.2. The RB approximation A0
N (µ) of the effective tensor allows an

offline-online splitting of the form

A0
N (µ) =

Q
A0

N∑
q=1

σq
A0

N
(µ)A0,q

N (3.7)

with constant matrices A0,q
N ∈ R

d×d.
Proof. The definition of A0

N (µ) (cf. (3.2)) and the affine decomposition of AY
yield [

A0
N (µ)

]
ij

= AY (yi − χiN (µ), yj − χjN (µ))

=
QA∑
q=1

σqA(µ)
(
AqY (yi, yj)−AqY (yi, χ

j
N (µ))

−AqY (χiN (µ), yj) +AqY (χiN (µ), χjN (µ))
)
.

Using the basis representations of χiN (µ) and χjN (µ) we end up with

AqY (yi, χ
j
N (µ)) =

NY (j)∑
k=1

αjk(µ)AqY (yi, ψ
j
k)︸ ︷︷ ︸

=:(Cq,i,j)
k

AqY (χiN (µ), yj) =
NY (i)∑
k=1

αik(µ)AqY (ψik, yj)︸ ︷︷ ︸
=:(Dq,i,j)

k

AqY (χiN (µ), χjN (µ)) =
NY (i)∑
k=1

NY (j)∑
l=1

αik(µ)αjl (µ)AqY (ψik, ψ
j
l )︸ ︷︷ ︸

=:(Eq,i,j)
kl

.
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Together with Bq
ij := AqY (yi, yj) this implies the following splitting:

(
A0
N (µ)

)
ij

=
QA∑
q=1

σqA(µ)
(
Bq
ij −α

j(µ) ·Cq,i,j −αi(µ) ·Dq,i,j

+αi(µ) ·Eq,i,jαj(µ)
)
.

It is clear that this expression can be cast in the asserted form.
Notice that the above corollary directly yields an affine decomposition for the

bilinear form AN which we denote AN (u, v;µ) =
∑QAN
q=1 σqAN

(µ)Aq
N (u, v).

Corollary 3.3. The coefficient vector β(µ) of u0
N (µ) is the solution ofQA0

N∑
q=1

σq
A0

N
(µ)Aq

N

β(µ) =
Qf∑
q=1

σqf (µ)Fq (3.8)

with

Aq
N = {AqN (ϕi, ϕj)}Ni,j=1, Fq = {Fq(ϕi)}Ni=1.

3.2.1. Reduced basis method for derivatives with respect to param-
eters. We start with the offline-online splitting for the cell problems. The same
arguments as in the proof of Proposition 3.1 can be used for (3.4) to provide the
following result: Let ∂µi

αk(µ) be the coefficient vector of ∂µi
χkN (µ), thenQAY∑

q=1

σqAY
(µ)Aq

Y

 ∂µi
αk(µ) =

QFk
Y∑

q=1

∂µi
σqFk

Y

(µ)Fk
Y

−

QAY∑
q=1

∂µi
σqAY

(µ)Aq
Y

αk(µ),

where we make use of the fact that due to the affine decompositions, the partial
derivatives directly apply to the σ-functions. The most important remark here is
that the above expression does not contain any addition offline data in comparison
to the reduced model for the cell problems. Thus, the overall computational efford to
calculate the parameter derivatives is neglectable.

A similar result can be given for u0
N (µ): For the coefficient vector ∂µiβ(µ) of

∂µiu
0
N (µ) we haveQAN∑
q=1

σqAN
(µ)Aq

N

 ∂µi
β(µ) =

QF∑
q=1

∂µi
σqF (µ)Fq −

QAN∑
q=1

∂µi
σqAN

(µ)Aq
N

β(µ).

Again, no addition offline efford is needed. Higher order derivatives allow similar
splittings as above, also with no extra data that has to be generated in the offline
phase.
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3.3. Optimization with reduced models. Our aim was to give a reduced
basis approximation of the optimization problem (1.1). At this point we have all the
neccessary ingredients to do this. First of all, we introduce the RB approximations
of the functionals J and Cj as

JN (µ) := J(u0
N (µ), µ)

CN,j(µ) := Cj(u0
N (µ), µ)

}
(3.9)

Then, the reduced optimization problem reads

Find µ∗N = arg min JN (µ)
subject to CN,j(µ) ≤ 0 ∀j = 1, . . . , N,

µ ∈ P

 (3.10)

In order to solve this problem efficiently, we need offline-online splittings for the
involved functionals. To that end we assume that JN and CN,j allow an expansion
similar to the affine decomposition above; in detail, we require

JN (µ) =
QJN∑
q=1

σqJN
(µ)JqN (ϕ1, . . . , ϕN ),

CN,j(µ) =

QCN,j∑
q=1

σqCN,j
(µ)CqN,j(ϕ1, . . . , ϕN ),


(3.11)

i.e. the reduced functionals can be decomposed into parameter-dependent parts only,
and into reduced-basis-dependent parts.2 Notice that JqN and CqN,j can be arbitrary
mappings. These decompositions ensure that the functionals as well as their parame-
ter derivatives allow an offline-online splitting and are therefore efficiently computable
for many different parameters.

Remark 3.4. There is a huge variaty of functionals that allow such a decompo-
sition. Here are some examples:

• Solution u0
N (µ) not involved: JN (µ) = c(µ) with an arbitrary c : P → R

• Polynomial integral expressions: JN (µ) =
∫

Ω
(u0
N (µ) − uref)p dx for some

p ∈N and a given reference configuration uref : Ω→ R
• Point evaluations: JN (µ) = u0

N (xref;µ) for some xref ∈ Ω
Remark 3.5. In addition to (3.11) – which is needed for computational efficiency

– further restrictions might be needed to ensure existence (and uniqueness) of µ∗N in
(3.10), see for example [8].

4. Numerical experiments. We consider Ω = (0, 0.6) × (0, 0.2) ⊂ R2, with
ΓR1 = [0, 0.2] × {0.2},ΓR2 = [0.4, 0.6] × {0.2} and ΓN = ∂Ω \ (ΓR1 ∪ ΓR2). For the
source term we define two circular bubbles Wi = {x ∈ Ω | ||x − ci|| < ri} with
c1 = (0.15, 0.1), c2 = (0.45, 0.1) and r1 = r2 = 0.025. We introduce four scalar
parameters µ = (µ1, . . . , µ4) and the parameter space is P = [0.001, 1]4 ⊂ R4. As
data functions we specify

f(x) = 500 · 1W1(x) + 800 · 1W2(x) (x ∈ Ω)

g(x;µ) = 300
(
µ3 · 1ΓR1

(x) + µ4 · 1ΓR2
(x)
)

(x ∈ ΓR1 ∪ ΓR2)

2This is actually a restriction to J and CJ , cf. (3.9)
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and the microscopic diffusion

A(y;µ) = 16(µ2 − µ1)y2
1(1− y1)2 + µ1 (y ∈ Y ),

extended to Rd by periodicity w.r.t. Y . Our test problem then is (1.2) with A
and f as above where the Dirichlet condition is replaced by a no-flow condition on
ΓN and Robin condition on the rest of ∂Ω (with right hand side g).3 It should be
mentioned that in this special case all cell solutions χ2(µ) vanish, since the diffusion
tensor depends only on y1, cf. (2.2).

Fig. 4.1. Example of a reduced solution of the test problem for µ = (0.2, 0.01, 0.3, 0.4). Top left:
χ1

h(µ), top right: cross-section plot of χ1
h(µ) in y1-direction; bottom: u0

h(µ). The effective diffusion
tensor is A0

h(µ) = diag(0.013, 0.094).

As discretization for the high-dimensional computations we chose piecewise lin-
ear finite elements on uniform grids with NY = 5, 000 and NΩ = 60, 000 triangles.
An example of a possible solution is given in Figure 4.1. The reduced spaces were
assembled by a walk-through of a uniform grid in parameter space. Table 4.1 shows
computational times for both detailed and reduced simulations, as well as reduction
errors for the macroscopic solution and one of the cell problems, calculated as the
average over 100 randomly chosen parameters µ.

4.1. Reduced multiscale optimization experiment. We test our method
with two different optimization problems. The first one has linear constraints and
an objective functional depending only on the parameter µ, while the second one is
unconstrained with a quadratic objective functional. More precisely, we define

J1(u0(µ), µ) :=
4∑
i=1

ωi(1 + µi)βi , C1(u0(µ), µ) :=
1
|Ω|

∫
Ω

u0(µ) dx− Tmax

3It can be shown that the homogenization theory is valid for this setting, too.
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Table 4.1
Comparison between detailed and reduced simulations for different sizes of the reduced bases

(averaged over 100 parameters).

(NY , NΩ) time det. time red. ||u0
h − u0

N || ||χ1
h − χ1

N ||
(5, 10) 1.30s 23.20ms 7.36 · 10−2 7.22 · 10−3

(10, 20) 1.38s 23.65ms 3.64 · 10−4 8.09 · 10−5

(15, 30) 1.47s 29.27ms 4.69 · 10−5 1.93 · 10−7

for the first and

J2(u0(µ), µ) :=
∫

Ω

(
u0(µ)− uref

)2
dx+

α

2
||µ||2, C2(u0(µ), µ) :≡ 0

for the second problem. Here, ωi, βi, Tmax, α ∈ R are given constants and uref : Ω→ R
is a reference configuration. For the upcoming results we used ωi = 1, βi = 2, Tmax =
650, uref ≡ Tmax and α = 2. The results are given in tables 4.2 and 4.3. We see that
the relative error between the reduced optimum µ∗N and the detailed one µ∗h is not
too big even for very small reduced bases and drops significantly for larger ones. We
also see that our method (including all offline calculations) is very efficient compared
to the detailed method, which finds expression in the speed-up factors. Note that
the online phase for the second setting increases stronger with the RB size than for
the first one. This is due to the fact that for the functional J2 the number of terms
in the affine decomposition scales quadratically with the basis size, while for C1 this
dependence is linear. Nevertheless, computational time is in both cases independent
of the dimension of the underlying high dimensional FEM solutions.

The resulting nonlinear programs are solved using the Matlab routine fmincon
with a built-in interior-point algorithm that can handle both linear and nonlinear
equality and inequality constraints as well as box constraints.

Table 4.2
Results of both optimization settings for different sizes of the reduced bases. In column 4, µ∗h

stands for the optimal parameter calculated with a detailed optimization. The runtime includes only
the online phase.

(NY , NΩ) µ∗N
||µ∗N−µ

∗
h||

||µ∗h||
runtime [s]

S.1 (5, 10) (0.0040, 0.0081, 0.0212, 0.0245) 1.77e-2 2.9
(10, 20) (0.0037, 0.0085, 0.0213, 0.0246) 8.63e-4 2.8
(15, 30) (0.0037, 0.0086, 0.0213, 0.0246) 3.76e-4 3.7

S.2 (5, 10) (0.2109, 0.2313, 0.0149, 0.0216) 4.42e-3 10.4
(10, 20) (0.2098, 0.2303, 0.0147, 0.0218) 4.40e-4 17.6
(15, 30) (0.2099, 0.2304, 0.0147, 0.0218) 6.14e-5 30.5

5. Conclusion. In this contribution we investigated in model reduction for
paramter optimization of elliptic multiscale problems. We introduced the reduced
basis method in this context and demonstrated in numerical experiments the ac-
curacy and efficiency of this model reduction approach in multi-query optimization
scenarios for multiscale problems.
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Table 4.3
Computational time for detailed and reduced optimization, with the size of the reduced bases

being (NY , NΩ) = (15, 30). In columns 3 and 4, the given values are without resp. with offline
phase.

detailed [s] reduced [s] speed-up factor
S.1 670.7 3.7 / 32.0 181.3 / 21.0
S.2 1528.0 27.5 / 98.7 55.6 / 15.5
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