
Proceedings of ALGORITMY 2012
pp. 11–21

EFFICIENT MATRIX-FREE IMPLEMENTATION OF
DISCONTINUOUS GALERKIN METHODS FOR COMPRESSIBLE

FLOW PROBLEMS

ROBERT KLÖFKORN

Abstract. We discuss the matrix-free implementation of Discontinuous Galerkin methods for
compressible flow problems, i.e. the compressible Navier-Stokes equations. For the spatial discretiza-
tion the CDG2 method and for temporal discretization an explicit Runge-Kutta method is used. For
the presented matrix-free approach we discuss asynchronous communication, shared memory paral-
lelization, and automated code generation to increase the floating point performance of the code.

Key words. Discontinuous Galerkin, Navier-Stokes, asynchronous communication, shard mem-
ory, code generation

AMS subject classifications. 35L65, 35G50, 35Q30, 65Y05

1. Introduction. Discontinuous Galerkin (DG) methods have been intensively
studied during the last decade for various types of flow problems. For compress-
ible flow DG methods seem to be well suited due to their stability, robustness, and
efficiency especially in parallel computations. Lately, several papers discussed the
parallel efficiency of DG methods in advanced applications, e.g. [12, 13, 18, 19]. In
this paper we want to pick up ideas about parallelization of DG methods (first given
in [2]) and ideas about proper implementation, for example in [14], to achieve high
on-node performance. A further aspect is the hybrid parallelization of DG methods
which will become more important on today’s many-core systems. As a test problem
we consider the so called Density Current test case from [22], a well accepted test
problem for atmospheric flow.

The paper is organized as follows: In Section 2 we describe the governing equa-
tions followed by the discretization in Section 3. In Section 4 we discuss the imple-
mentation of the DG method and present numerical results. A short summary and
outlook is presented in Section 5.

2. Governing Equations. The system we investigate is governed by the viscous
compressible flow equations in θ-form, for example, described in [10]. For Ω ⊂ Rd,
d = 1, 2, 3, these equations can be written in the form

∂tU = L(U) in (0, T]× Ω, (2.1)
U(0, ·) = U0(·) in Ω,

with L(U) := −∇ ·
(
F(U) − A(U)∇U

)
+ S(U) and suitable boundary conditions.

The vector of conservative variables is U = (ρ, ρv, ρθ)T. ρ is the density, θ the
potential temperature, and v = (v1, ..., vd)T the velocity field. F(U) = (Fi(U)) and
A(U)∇U = ((A(U)∇U)i) for i = 1, ..., d, are given as follows:

Fi(U) =

ρvi

ρv1vi + δ1ip
...

ρvdvi + δdip
viρθ

 ,
(
A(U)∇U

)
i

= µρ

0
∂iv1

...
∂ivd
∂iθ

 . (2.2)

11

12 R. KLÖFKORN

with µ being the kinematic viscosity. The source term S is only acting on the last
component of the velocity field, i.e. S(U) = (0, ..., 0,−ρg, 0)T with g being the
constant of the gravitation force. To close the system we define the pressure p in
accordance with the ideal gas law p = p0

(
ρRdθ
p0

)γ
, where γ = cp/cv is the heat

capacity ratio and cp and cv are specific heat capacities under constant pressure and
volume, respectively. The individual gas constant is defined as Rd = cp − cv. For the
standard reference pressure p0 we choose p0 = 105 Pa.

3. Discretization. The considered discretization is based on the Discontinuous
Galerkin (DG) approach and implemented in Dune-Fem [8] a module of the Dune
framework [3, 4]. The current state of development allows for simulation of convection
dominated (cf. [7]) as well as viscous flow (cf. [5]). We consider the CDG2 method from
[5] of up to 5th order in space and 3rd order in time for the numerical investigations
carried out in this paper.

3.1. Spatial Discretization. The spatial discretization is derived in the fol-
lowing way. Given a tessellation Th of the domain Ω with ∪K∈Th

K = Ω the discrete
solution Uh is sought in the piecewise polynomial space

Vh = {v ∈ L2(Ω,Rd+2) : v|K ∈ [Pk(K)]d+2, K ∈ Th} for some k ∈ N,

where Pk(K) is a space containing polynomials up to degree k. On quadrilateral or
hexahedral elements we replace Pk withQk build by products of Legendre polynomials
of up to degree k in each coordinate.

We denote with Γi the set of all intersections between two elements of the grid
Th and accordingly with Γ the set of all intersections, also with the boundary of the
domain Ω. The following discrete form is not the most general but still covers a wide
range of well established DG methods. For all basis functions ϕ ∈ Vh we define

〈ϕ,Lh(Uh)〉 := 〈ϕ,Kh(Uh)〉+ 〈ϕ, Ih(Uh)〉 (3.1)

with the element integrals

〈ϕ,Kh(Uh)〉 :=
∑
K∈Th

∫
K

(
(F(Uh)−A(Uh)∇Uh) : ∇ϕ+ S(Uh) ·ϕ

)
, (3.2)

and the surface integrals (by introducing appropriate numerical fluxes F̂e, Âe for the
convection and diffusion terms, respectively)

〈ϕ, Ih(Uh)〉 :=
∑
e∈Γi

∫
e

(
{{A(Uh)T∇ϕ}}e : [[Uh]]e + {{A(Uh)∇Uh}}e : [[ϕ]]e

)
(3.3)

−
∑
e∈Γ

∫
e

(
F̂e(Uh)− Âe(Uh)

)
: [[ϕ]]e,

where {{V }}e = 1
2 (V + +V −) denotes the average and [[V]]e = (n+⊗V + +n−⊗V −)

the jump of the discontinuous function V ∈ Vh over element boundaries. For matrices
σ, τ ∈ Rm×n we use standard notation σ : τ =

∑m
j=1

∑n
l=1 σjlτjl. Additionally, for

vectors v ∈ Rm,w ∈ Rn, we define v ⊗w ∈ Rm×n according to (v ⊗w)jl = vjwl

for 1 ≤ j ≤ m, 1 ≤ l ≤ n.

IMPLEMENTATION OF DG METHODS 13

The convective numerical flux F̂e can be any appropriate numerical flux known
for standard finite volume methods. For the results presented in this paper we choose
F̂e to be the HLL numerical flux function described in [17].

A wide range of diffusion fluxes Âe can be found in the literature, for a summary
see [1]. We choose the CDG2 flux

Âe(V) := 2χe
(
A(V)re([[V]]e)

)
|K−e for V ∈ Vh, (3.4)

which was shown to be highly efficient for the Navier-Stokes equations (cf. [5]). Based
on stability results, we choose K−e to be the element adjacent to the edge e with the
smaller volume. re([[V]]e) ∈ [Vh]d is the lifting of the jump of V defined by∫

Ω

re([[V]]e) : τ = −
∫
e

[[V]]e : {{τ}}e for all τ ∈ [Vh]d. (3.5)

For the numerical experiments done in this paper we use χe = 1
2NTh

, where NTh
is

the maximal number of intersections one element in the grid can have (cf. [5]). For
most of the numerical results in this paper we use conforming hexahedral elements
and thus χe = 3 for all e ∈ Γ.

3.2. Temporal discretization. The discrete solution Uh(t) ∈ Vh has the form
Uh(t, x) =

∑
iU i(t)ϕi(x). We get a system of ODEs for the coefficients of U(t)

which reads

U ′(t) = f(U(t), t) in (0, T] (3.6)

with f(U(t), t) = M−1Lh(Uh(t), t), M being the mass matrix which is in our case
block diagonal or even the identity, depending on the choice of basis functions. U(0)
is given by the projection of U0 onto Vh.

Disregarding the order of the spatial discretization we use an explicit Strong
Stability Preserving Runge-Kutta method (SSP-RK) of third order [11]. Implicit or
semi-implicit Runge-Kutta solvers based on a Jacobian-free Newton-Krylov method
(see [16]) are also available for the proposed DG method and implemented in the
Dune-Fem framework. The results and implementation techniques presented in this
paper can be applied to explicit, implicit, or semi-implicit methods, as long as a
matrix-free implementation of the discrete operator Lh is used.

4. Numerical results. In this section we discuss aspects of the implementation
of our proposed DG method from the previous section. We consider the so called Non-
Linear Density Current test case described in [22]. In this test case one examines the
evolution of a cold bubble in a neutrally stratified atmosphere.

Fig. 4.1. Results of the a 3D Density Current test case for a run on a Cartesian grid with
18 490 cells using the above described DG method of order k = 5. From left to right the iso-surfaces
for the potential temperature θ at T = 0, 450, 900 seconds is shown.

14 R. KLÖFKORN

Fig. 4.2. Serial grid split into 4 partitions including a ghost cell approach at the process
boundaries. The arrows indicate the data exchange necessary for the evaluation of the discrete
spatial operator Lh.

In Fig. 4.1 we can see the time evolution of this cold bubble. For our numerical
tests in this section we will not run the full simulation. Instead we only run a few
timesteps which is sufficient to get reliable information about the efficiency of the
method.

We start with a detailed description of the communication procedures used during
the evaluation of the spatial discrete operator Lh. This is followed by an approach
to hybrid parallelization, i.e. shard memory based micro parallelization. The section
is concluded by a discussion on implementation of basis function evaluation which is
the most expensive part in the evaluation of Lh. Note once again that the following
implementation suggestions rely strongly on the fact that the method is applied in
the previously described matrix-free fashion.

4.1. Asynchronous communication. The parallelization techniques in Dune
[3, 4] and Dune-Fem [8] are based on domain decomposition using MPI [9] for data
exchange between multiple processes. The domain decomposition is usually achieved
by using graph partitioning tools like ParMETIS [20]. We discuss some limitations of
the Dune grid interface at present state, namely missing intersection communication,
only support of blocking communication, and possible grid traversal in communication
procedures. We try to highlight possible solution for these problems.

For illustration we consider a grid decomposed into 4 domains as presented in
Fig. 4.2. During the evaluation of the discrete operator Lh in (3.1) numerical fluxes at
cell boundaries have to be evaluated. This means that for one element the information
about the solution Uh on directly neighboring cells is needed. If the neighboring cell
is a ghost cell, communication has to be used to obtain data of the solution Uh on
this cell (see also Fig. 4.2). In fact, for the DG method it would be sufficient to
only exchange values of the discrete function Uh at the process boundaries since for
the evaluation of Lh neighboring information is only needed at the cell interfaces
and not on the neighboring cell itself (see also (3.1)). Theoretically this allows to
completely avoid ghost cells. However, the corresponding communication interfaces

IMPLEMENTATION OF DG METHODS 15

for exchanging data on an intersection e are still missing in Dune. Therefore, we have
to rely on the ghost cell approach for the evaluation of numerical fluxes at process
boundaries.

During each evaluation of the discrete spatial operator Lh one data transfer from
interior cells to their ghost copies (see Fig. 4.2) has to be performed. The current
state of the Dune grid interface only supports blocking communication, i.e. once
the communication has been started the simulation waits until all communications
initiated by the same call are finished. Furthermore, the very general communication
interface in Dune does not specify whether the communication does involve itera-
tion over grid entities or not (e.g. in ALUGrid [6] it involves grid traversal). For
implicit solvers or even explicit solvers in non-adaptive simulations this should be
avoided since grid traversal is to expensive compared to matrix-vector multiplication
or similar operation that require communication. Thus communication that includes
grid traversal decreases the performance of the solver drastically. This problem has
been overcome in Dune-Fem by building communication look-up tables for each dis-
crete function space. During setup the standard Dune communication is used to
exchange the necessary linkage information to create the send-receive patterns for
communication of degrees of freedom (DoF)s. As a result communication of DoFs
does not include grid traversal anymore. This is described in detail in [8] including a
scaling study comparing both communication strategies. The decoupling of the com-
munication procedures from the Dune grid interface allows to further improve the
communication for allowing non-blocking or even truly asynchronous communication.

In the following we describe how the communication can be improved for our
proposed DG method. Using the Dune grid interface communication a natural way
to exchange data for the evaluation of the discrete spatial operator would be an
interior-ghost communication just before the evaluation of the discrete spatial op-
erator. This guarantees that all necessary data for the evaluation of the numerical
fluxes are present. In the following we call this synchronous communication.
The drawback of this approach is, that every process has to wait until all commu-
nications have been finished before starting with the computation of Lh. Newly
investigated communication techniques such as asynchronous communication (cf.
[21]) might drastically increase the strong scaling of the code. The basic idea is to
hide network latency behind the evaluation of the element integrals since these in-
tegrals can be computed without information from other partitions. To achieve this
we use the splitting of the discrete operator into element and surface integrals, i.e.
Lh(Uh) = Kh(Uh) + Ih(Uh), from equation (3.1). Since for the computation of Kh
(given in equation (3.2)) on each cell K no neighboring information is needed and thus
no data exchange between different processes is necessary. The improved computation
of Lh is done in the following steps:

1. Initiate communication by sending interior data required by other pro-
cesses for evaluation of numerical fluxes using the MPI function MPI Isend.
This method is non-blocking in the sense that the actual sending might not
be finished on return of the method MPI Isend (cf. [9]).

2. Compute Kh(Uh) from (3.2) which only involves computation of element
integrals and no data exchange is required.

3. Receive data for ghost cells, e.g. by using the MPI function MPI Iprobe to
check whether communication has been finished and if a message was received
using MPI Recv (cf. [9]) to copy the message to the corresponding storage on
the ghost cells.

16 R. KLÖFKORN

Table 4.1
Strong scaling and efficiency of the DG code on the supercomputer JUGENE (Jülich, Germany)

without and with asynchronous communication. P denotes the number of cores, G := |Th| the
overall number of grid elements, and N := |Vh| denotes the number of degrees of freedom. η̄ is the
average run time in milliseconds needed to compute one timestep. S512→P := η̄512/η̄P denotes the
speed-up from 512 to P cores with respect to η̄ and E512→P := 512

P
S512→P being the efficiency.

synchronous comm. asynchronous comm.

P G/P N/P η̄ S512→P E512→P η̄ S512→P E512→P

512 474.6 296 630.8 68 579 — — 46 216 — —

4 096 59.3 37 324.9 14 575 4.71 0.59 6 294 7.34 0.91

32 768 7.4 4 634.8 5 034 13.62 0.21 949 48.71 0.76

65 536 3.7 2 317.4 — — — 504 91.70 0.72

4. Compute Ih(Uh) from (3.3) which involves only surface integrals. Now, the
values of the function Uh on the ghost cells are available.

5. Accumulate Lh(Uh) = Kh(Uh) +Ih(Uh) (which is only a vector operation
on the vector of degrees of freedom) and proceed as before.

In Table 4.1 we present the strong scaling of the DG code on the supercomputer
JUGENE (IBM BlueGene/P, Jülich, Germany). Similar results for unsteady flow
problems using DG methods were obtained by Hindenlang et al. [12] on up to 4 096
cores. We compute the Density Current in 3D using basis functions of order k = 4
including automated code generation (see Section 4.3) on a Cartesian grid with 243 000
cells in total. The overall memory consumption in a serial run is about 6.1 GB.
This means that this problem can still be run on a standard desktop machine (at
time of writing). Therefore, this test also shows the possibility of the presented DG
code to scale standard test problems to a huge number of cores. In order to save
computation time on the JUGENE which is only very limited available, we only
compute 30 timesteps per run and compare the average run time per timestep η̄. In
the left part of Table 4.1 we can see that using the usual synchronous communication
would not allow us to scale our problem efficiently to 32 768 cores. The efficiency is
only about 21% which means that a huge portion of our run time is spend in waiting
for communication of our data. We can conclude that the standard synchronous
communication does not allow to scale our problem to 32 768 cores. However, the
right part of Table 4.1 indicates that the use of asynchronous communication allows
to scale our problem to 65 536 cores with a reasonable efficiency of about 72%. This
means that the proposed asynchronous communication drastically increases the strong
scaling of the code and allows also to compute problems of moderate size on a huge
number of cores. Note that the run on 65 536 cores uses an average of 3.7 cells per
core (G/P) resulting in an average of only 2 317.4 DoFs per core (N/P). However, the
internal simple partitioning of SPGrid [15] in this case lead to a domain decomposition
with maximal 8 elements and minimal 1 element per core which is far from being
optimal. A better load balance will further increase the scalability in this case.

4.2. Shared memory parallelization. Similar to the domain decomposition
presented in Section 4.1 in this section we present a shared memory parallelization for
our DG solver based on POSIX threads. It turns out that this can be achieved with
minimal changes to the implementation. Given a computational grid again the basic
idea is to split the grid in several domains, one domain for each thread. Then each
thread only computes the operator Lh on cells assigned to this thread. As before,
the domain decomposition is obtained by using a graph partitioning approach. Since

IMPLEMENTATION OF DG METHODS 17

0 1

4 5

10

5 6

1110

2

12

7

Thread 0

Thread 2

10 11 12

20

15

8 9

12 13

16

21

17

22

thread interior cell

12 13 14

22

17

10 11

14 15

1918

23 24

Thread 1

Thread 3

2 3

6 7

43

98

1312

2

14

7

interior vertex

thread border vertexrequires sync.

Fig. 4.3 Serial grid split into 4
partitions for a the thread based
partitioning.

Table 4.2
Strong scaling and efficiency of the DG solver on a 16

core AMD Barcelona system. The shared memory paral-
lelization has been carried out using POSIX threads. Q de-
notes the number of threads used. G/Q is the number of ele-
ments per thread and N/Q the number of Dofs per thread. F̃
denotes the ratio between intersections at the thread domain
boundary and the overall number of intersections per thread.
η̄ is the average run time per time step and S1→Q := η̄1/η̄Q

denotes the speed-up from 1 to Q threads with respect to η̄
and E1→Q := 1

Q
S1→Q.

coarse grid

Q G/Q N/Q F̃ η̄ S1→Q E1→Q

1 72 45000 0 842 — —

2 36 22500 0.08 416 2.02 1.01

4 18 11250 0.15 205 4.11 1.03

8 9 5625 0.38 110 7.66 0.96

16 4.5 2812.5 0.68 63 13.4 0.84

fine grid

Q G/Q N/Q F̃ η̄ S1→Q E1→Q

1 243 151875 0 2185 — —

2 121.5 75937.5 0.06 1135 1.92 0.96

4 60.75 37968.8 0.13 523 4.18 1.05

8 30.38 18984.4 0.28 264 8.28 1.04

16 15.19 9492.2 0.45 142 15.39 0.96

all data are available to all threads simultaneously, no complicated data migration
has to be implemented. In fact it is sufficient to implement an additional filtering
mechanism for the already available Dune grid iterators. The modified iterators
should only stop on elements assigned to the thread the iterator was created on. For
the implementation of iterators that only traverse a thread partition we require the
underlying Dune grid to be thread safe with respect to operations that do not change
the grid such as traversal of elements.

Instead of data communication, the difficulty here is to avoid that different threads
write to the same memory address simultaneously. In our example this can in partic-
ular happen during the calculation of the numerical fluxes because the numerical flux
is only computed once per intersection (using the conservation property) for efficiency
reasons. This means that given the grid from Fig. 4.3 the computations of the numer-
ical fluxes for the intersection between element 5 and 6 can causes clashes between
thread 0 and thread 1 when updating the vector of coefficients. To avoid such race
conditions one could introduce so called mutex locks that make sure that certain parts
of the code are only executed by one thread at the same time. In our implementation
we avoid write clashes by computing numerical fluxes at thread domain boundaries
twice, once for each thread at the thread domain boundary. This way write clashes
can never occur at the expense of an increased numerical complexity.

To investigate the strong scaling behavior of our DG solver we again compute
30 timesteps for a coarse grid with 72 elements and a finer grid with 243 elements.
We compare the average run time per timestep to obtain scaling information. The
computations have been done on a AMD Barcelona system (Processor 8347) with 4
sockets and 4 cores per socket. In Table 4.2 we present the strong scaling results for
the DG solver using basis functions with polynomial degree k = 4 and automated

18 R. KLÖFKORN

code generation (see Section 4.3). We see that the scaling up to 8 cores is very good,
mostly above 95%. This can be achieved with pinning of threads to specific cores,
in this case on separate sockets resulting in increased local cache sizes relative to
the problem size. This explains the efficiency rates of above 1 for the first runs.
Using the full system with 16 threads we see that the efficiency is decreased to a still
acceptable rate of about 84% in the coarse grid case. Decomposing the domain into
16 parts results in 68% of the intersections being located at a domain boundary and
thus fluxes on theses interfaces have to be computed twice. For the finer grid the
scaling is slightly better, as expected, which is clear since the ratio between interior
intersections and intersections at the thread domain boundary is smaller. Again we
conclude that a minimal amount of around 2 500 DoFs per thread (core) is needed
for efficient parallel computation of the operator Lh.

4.3. Automated code generation. In this section we investigate the perfor-
mance of our DG solver with respect to floating point operations per second (FLOPS).

Recalling the structure of the discrete operator Lh (3.1) we see that it mainly
consists of integrals on elements and intersections. For convenience we only consider
the simple source term integral from (3.1) with an appropriate set of quadrature
points QK for element K ∈ Th∫

K

S(Uh) ·ϕ ≈
∑

(ω,λ)∈QK

ωS(Uh(λ)) ·ϕ(λ) ∀ ϕ ∈ Vh. (4.1)

With Uh(x)|K =
∑
iU iϕi(x) we see that for the evaluation of the integrals in

the discrete operator Lh we have to evaluate, for example, all basis functions on
element K for all quadrature points in QK . Since the interface in Dune-Fem for
evaluation of basis functions allow to do this at once for all basis functions for a
given quadrature it makes sense to optimize these matrix-matrix like multiplications
(MMM). Similar ideas for DG methods on GPUs have been presented in [14].

For flexibility reasons the design of basis function sets and quadratures in Dune-
Fem have been made such that the number of basis functions and number of quadra-
ture points is provided dynamically, i.e. information that is available during run time,
but not at compile time. Therefore, the for-loops in the MMM cannot be unrolled by
the compiler and thus possibly resulting in non-optimal code.

To overcome this problem we implemented an approach based on automated
code generation. This simply means that instead of compiling our code once, we
compile it twice. First, we compile the code in the usual way and run one time
step for a small problem size. During this run we determine all combinations of
basis functions and quadrature points that have been used. For these combinations
we are now able to provide more efficient auto-generated implementations of the
expression in (4.1). In the second compilation we can now make use of the previously
determined combinations of number of basis function and quadrature points which
are now statically available at compile time.

In the following we compare both approaches in terms of FLOPS performance.
The performance measurements have been done on an Intel Core i7 (Nehalem) CPU
Q740 @ 1.73 Ghz with a theoretical peak performance of 27.728 GLFOPS. In Table 4.3
we present FLOPS measurement of our DG solver using a Cartesian grid, i.e. SPGrid
[15], and a fully unstructured grid, i.e. ALUGrid [6], as computational grid. All
computations use the shared memory parallelization described in Section 4.2 with
4 threads on our considered CPU with 4 cores. The FLOPS were measured with

IMPLEMENTATION OF DG METHODS 19

Table 4.3
Performance measurement of the DG code for polynomial orders k = 1, 2, 3, 4 using a Cartesian

grid (SPGrid) and fully unstructured grid (ALUGrid). N/G denotes the number of DoFs per element,
η̄ denotes the average run time per time step. GFLOPS denote the measured performance of the
DG code in GFLOPS and PERF% denotes the ratio between the measured performance and the
theoretical peak performance of about 27.728 GLFOPS.

SPGrid

without code generation with code generation

k N/G η̄ GFLOPS PERF % η̄ GFLOPS PERF %

1 40 136 3.08 11.1 127 3.35 12.08

2 135 526 3.90 14.06 431 4.89 17.63

3 320 1805 4.35 15.68 1241 6.45 23.26

4 625 5261 4.58 16.51 3592 6.8 24.52

ALUGrid

without code generation with code generation

k N/G η̄ GFLOPS PERF % η̄ GFLOPS PERF %

1 40 162 2.66 9.59 149 2.81 10.13

2 135 578 3.27 11.79 485 4.25 15.32

3 320 1880 4.09 14.74 1352 5.73 20.66

4 625 5318 4.37 15.75 3647 6.77 24.41

the open source tool likwid [23] at version 2.2.1. We see that on SPGrid for the
version without code generation we obtain reasonable performance rates of about
11% − 16.5% of the theoretical peak performance. Using the auto generated code
we are able to increase the performance to 12% − 24.5%. Especially for the higher
order method we are able to increase the methods performance to about 1/4 of the
theoretical peak performance. The same measurements for ALUGrid show a slightly
inferior performance compared to SPGrid. Without automated code generation the
performance rates are between 9.5%−15.75% whereas with automated code generation
the performance can be increased to 10%− 24.4%. For the higher order methods the
difference between the Cartesian and the fully unstructured grid is very small, due
to the high amount of DoFs per element. The results also show that using a higher
order method the increased data locality leads to very good performance of the code.

5. Conclusion and Outlook. In this paper we gave a brief description of a
DG solver for compressible flow. We discussed aspects of implementation (based on
Dune-Fem and Dune) of the DG solver with respect to asynchronous communica-
tion, thread based micro partitioning, and code optimization to achieve high floating
point performance. For our matrix-free implementation we could prove that using
asynchronous communication even small problems can be scaled to a high number of
cores (65 536 in our case). This can probably be improved by replacing the simple
partitioning in SPGrid with a space filling cure based approach. Further improvement
could be achieved by combining the MPI parallelization with the shared memory par-
allelization based on POSIX threads. Also the thread based parallelization showed
good scaling even for small grids. Both parallelization techniques require a minimal
amount of around 2 500 DoFs per core which in case of the DG method boils down
to a few number of elements per core. Due to technical problems we were not able
to provide results for the scaling of the hybrid version (MPI + POSIX threads) of
the code on the JUGENE, yet. This is ongoing work and we expect that the hy-
brid version of the code will scale even better. To further increase the codes floating
point performance – which is currently between 10% and 25% of the theoretical peak

20 R. KLÖFKORN

performance depending on the order of the method – we will make use of the SIMD
architecture of modern CPUs which has not been done yet.

Acknowledgments. The author acknowledges Gregor Gassner and Claus-Dieter
Munz (both IAG, Uni Stuttgart) for helpful comments on implementation of DG
methods, Georg Hager (RRZE, Uni Erlangen) and Gerhard Wellein (INF, Uni Erlan-
gen) for fruitful discussions about code optimization. Furthermore, thanks to Slavko
Brdar (AAM, Uni Freiburg) for providing the pictures in Fig. 4.1, and Martin Nolte
(AAM, Uni Freiburg) and Andreas Dedner (Mathematics Institute, Uni Warwick) for
helpful comments. Major part of the computation time was kindly provided by the
Jülich Supercomputing Centre.

REFERENCES

[1] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.

[2] A. Baggag, H. Atkins, and D.E. Keyes. Parallel Implementation of the Discontinuous Galerkin
Method. In Proceedings of Parallel CFD’99, pages 115–122, 1999.

[3] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and
O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part
II: Implementation and Tests in DUNE. Computing, 82(2–3):121–138, 2008.

[4] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander. A
Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract
Framework. Computing, 82(2–3):103–119, 2008.

[5] S. Brdar, A. Dedner, and R. Klöfkorn. Compact and stable Discontinuous Galerkin methods
for convection-diffusion problems. SIAM J. Sci. Comput., 34(1), 2012.

[6] A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger. An efficient implementation of an adaptive
and parallel grid in dune. In E. Krause et al., editor, Computational Science and High
Performance Computing II, volume 91, pages 67–82. Springer, 2006.

[7] A. Dedner and R. Klöfkorn. A generic stabilization approach for higher order Discontinuous
Galerkin methods for convection dominated problems. J. Sci. Comp., 47(3):365–388, 2011.

[8] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A generic interface for parallel and adap-
tive scientific computing: Abstraction principles and the Dune-Fem module. Computing,
89(1), 2010.

[9] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 2.2.
High Performance Computing Center Stuttgart (HLRS), 2009.

[10] F.X. Giraldo and M. Restelli. A Study of Spectral Element and Discontinuous Galerkin Meth-
ods for the Navier-Stokes equations in Nonhydrostatic Mesoscale Atmospheric Modeling :
Equations Sets and Test Cases. J. Comput. Phys., 227:3849–3877, 2008.

[11] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretiza-
tion methods. SIAM Rev., 43(1):89–112, 2001.

[12] F. Hindenlang, G.J. Gassner, Ch. Altmann, A. Beck, M. Staudenmaier, and C.-D. Munz.
Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids, 2012.

[13] James F. Kelly and Francis X. Giraldo. Continuous and discontinuous galerkin methods for a
scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode. Journal
of Computational Physics, 2012.

[14] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal discontinuous Galerkin
methods on graphics processors. J. Comput. Phys., 228:7863–7882, November 2009.

[15] R. Klöfkorn and M. Nolte. Performance Pitfalls in the DUNE Grid Interface. In A. Dedner,
B. Flemisch, and R. Klöfkorn, editors, Advances in DUNE. Springer, 2012.

[16] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of approaches
and applications. J. Comput. Phys., 193(2):357–397, 2004.

[17] D. Kröner. Numerical Schemes for Conservation Laws. Wiley & Teubner, Stuttgart, 1997.
[18] R.D. Nair, H.W. Choi, and H.M. Tufo. Computational aspects of a scalable high-order discon-

tinuous Galerkin atmospheric dynamical core. Computers and Fluids, 30:309319, 2009.
[19] P.-O. Persson. Scalable Parallel Newton-Krylov Solvers for Discontinuous Galerkin Discretiza-

tions. In Proc. of the 47th AIAA Aerospace Sciences Meeting and Exhibit, 2009.
[20] K. Schloegel, G. Karypis, and V Kumar. Wavefront Diffusion and LMSR: Algorithms for Dy-

namic Repartitioning of Adaptive Meshes. IEEE Transactions on Parallel and Distributed
Systems, 12(5):451–466, 2001.

IMPLEMENTATION OF DG METHODS 21

[21] G. Schubert, H. Fehske, G. Hager, and G. Wellein. Hybrid-parallel sparse matrix-vector multi-
plication with explicit communication overlap on current multicore-based systems. Parallel
Processing Letters, 21(3):39–358, 2011.

[22] J. M. Straka, R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier. Numer-
ical Solutions of a Non-Linear Density Current: A Benchmark Solution and Comparison.
Int. J. Num. Meth. Fluids, 17:1–22, 1993.

[23] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-oriented tool suite for
x86 multicore environments. In Proceedings of PSTI2010, the First International Work-
shop on Parallel Software Tools and Tool Infrastructures, San Diego CA, 2010.

