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FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS
WITH IMPLICIT CONSTITUTIVE RELATION∗

JAN STEBEL†

Abstract. The paper deals with the numerical simulations of steady flows if incompressible
fluids whose stress-strain relation is given through an implicit function. In particular, the stress-
power law is studied and compared to the classical power law. We propose several formulations
of the problem, their stable approximations and particular examples of finite element spaces. The
method is demonstrated by numerical results.
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1. Introduction. It is well-known that for many fluids the Newton’s postulate of
linear relation between the traceless part S of the Cauchy stress T and the symmetric
velocity gradient D is invalid. One of mostly used class of non-Newtonian models,
taking into account the dependence of the viscosity on the shear rate, determines S
as a possibly nonlinear function of D. Despite the generality, there are some fluid
materials for which this explicit dependence of the stress is not true, e.g. viscoplastic
fluids. As pointed out in Málek et al. [5], the concept is also unnatural from the
viewpoint of causality, namely that the force is expressed in terms of the kinematic
quantities that reflect the deformation. They propose a solution through the stress-
power laws that express D in terms of powers of S. A general framework of Rajagopal
and Srinivasa [7] unifies the above mentioned approaches allowing T and D to be
related in an implicit way.

To be more specific, we consider steady flows of incompressible fluids whose mo-
tion is described by the equations

−div S +∇p = ρf , div v = 0, G(S,D) = 0 in Ω, (1.1)

where Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with Lipschitz boundary, ρ, v, f is
the density, the velocity and the body force, respectively,

D = D(v) :=
1

2

(
∇v +∇v>

)
and G : Rd×d × Rd×d → Rd×d is a continuous tensor function. For example, G can
take the following forms:

• Fluids with shear rate dependent viscosity (power-law fluids)

G(S,D) = S− µ(1 + λ|D|2)
r−2
2 D; (1.2)
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• Stress-power-law fluids

G(S,D) = µ−1(1 + λµ−2|S|2)nS− D, n =
2− r

2(r − 1)
. (1.3)

The scaling has been chosen in such a way that the asymptotic behaviour of both mod-
els is the same for given µ, λ > 0 and r ∈ (1,∞). Observe that when G takes the form
(1.2) or (1.3), the implicit relation (1.1)3 automatically implies the incompressibility
constraint

trDv = div v = 0.

The system has to be completed by an appropriate boundary condition, for instance
by the no-slip condition

v = 0 on ∂Ω.

The difficulty of the general approach stems from the fact that the stress cannot be
eliminated from the governing equations of motion. Hence the traditional velocity-
pressure formulation does not apply. The aim of this paper is to propose several
suitable formulations involving the stress and their finite element approximation.

Mathematical analysis of incompressible fluids with general implicit relation (1.1)3

is far from being established, the author is aware only of the references [2, 5].

2. Weak formulations. We will present several formulations of problem (1.1)
involving Cauchy stress or its deviatoric part as the unknown. In all cases the stress
is assumed to be only integrable while the derivatives are left on the velocity. We
refer to [3] for a different approach where the stress function space is a subspace of
H(Ω; div).

Throughout the paper the following notation will be used.

Lq0 :=

{
ψ ∈ Lq(Ω);

∫
Ω

ψ = 0

}
,

W 1,q
0 :=

{
ϕ ∈W 1,q(Ω); Trϕ = 0 on ∂Ω

}
,

Lq :=
{
ξ ∈ Lq(Ω;Rd×dsym); tr ξ ∈ Lq0

}
,

Lq0 := Lq(Ω;Rd×dsym,tr=0).

The first formulation reads:
Problem (A). Find (S,v, p) ∈ Lr′0 ×W

1,r
0 × Lr

′

0 such that

(S,Dϕ)− (p,divϕ) = (f ,ϕ) ∀ϕ ∈W 1,r
0 ,

(ψ,div v) = 0 ∀ψ ∈ Lr
′

0 ,

(G(S,Dv), ξ) = 0 ∀ξ ∈ Lr
′

0 .

If one considers the full Cauchy stress as an unknown then it is possible to elim-
inate the pressure as it can be seen from the next formulation:

Problem (B). Find (T,v) ∈ Lr′ ×W 1,r
0 such that

(T,Dϕ) = (f ,ϕ) ∀ϕ ∈W 1,r
0 ,(

G(Tδ,Dv), ξ
)

= 0 ∀ξ ∈ Lr
′
.

Here Tδ := T− 1
d (trT)I stands for the deviatoric part of T.

In the last case we relax the constitutive relation by adding the symmetric velocity
gradient to the list of unknowns, which yields:
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Problem (C). Find (T,v,D) ∈ Lr′ ×W 1,r
0 × Lr0 such that

(T,Dϕ) = (f ,ϕ) ∀ϕ ∈W 1,r
0 ,(

G(Tδ,D), η
)

= 0 ∀η ∈ Lr0,

(D− Dv, ξ) = 0 ∀ξ ∈ Lr
′
.

Let us note that for the Stokes problem, i.e.

G(S,D) = S− D, r = 2, (2.4)

the existence of a unique weak solution is well known. To keep ideas clear, we will
restrict to this case in the next section.

3. Numerical analysis of problems (A)-(C). In this section we investigate
the general conditions on the stability of the finite element approximation of problems
(A)-(C) under the assumption (2.4).

Let Th be a partition of Ω into simplices with the norm h := maxK∈Th diamK.
The discrete formulations are based on the Galerkin method, i.e. we seek the ap-
proximate solutions in finite dimensional spaces Lh ⊂ L2, L0h ⊂ L2

0, W h ⊂ W 1,2
0 ,

and Lh ⊂ L2
0, which are to be determined. In order to emphasize the structure of

these problems, we define the operators A : L2 → (L2)∗, B1 : L2 → (W 1,2
0 )∗ and

B2 : L2
0 → (W 1,2

0 )∗:

〈AT, ξ〉 :=
(
Tδ, ξδ

)
,

〈B1T,ϕ〉 := − (T,Dϕ) ,

〈B2p,ϕ〉 := (p,divϕ) ,

and define:
Problem (A)h. Find (Sh,vh, ph) ∈ L0h ×W h × Lh such that A 0 B′1

0 0 B′2
B1 B2 0

Shph
vh

 =

0
0
f

 in (L0h)∗,
in (Lh)∗,
in (W h)∗.

Problem (B)h. Find (Th,vh) ∈ Lh ×W h such that[
A B′1
B1 0

] [
Th
vh

]
=

[
0
f

]
in (Lh)∗,
in (W h)∗.

Problem (C)h. Find (Dh,vh,Th) ∈ L0h ×W h × Lh such that A 0 −A
0 0 −B1

−A −B′1 0

Dhvh
Th

 =

0
f
0

 in (L0h)∗,
in (W h)∗,
in (Lh)∗.

Due to the saddle-point structure of these problems the choice of the finite dimen-
sional spaces is restricted by the requirement to satisfy appropriate inf-sup conditions.
At this point we recall some results of the theory of abstract saddle-point problems.
We start by the classical statement (see e.g. [1, 3]).

Theorem 3.1. Let U and P be reflexive Banach spaces, A : U → U∗ be contin-
uous, B : P → U∗ continuous and linear. Let Z := kerB′. Then the following are
equivalent.
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1. (Existence of solutions) For all f ∈ U∗ and g ∈ P ∗ there exists (u, p) ∈ U×P
such that
(a) A(u)−Bp = f in U∗, B′u = g in P ∗,
(b) ‖u‖U/Z ≤

1
c ‖g‖P∗ .

2. (a) For all f ∈ U∗ and ug ∈ U there exists u ∈ U such that u− ug ∈ Z and

A(u) = f in Z∗,

(b) There exists c > 0 such that

‖Bp‖U∗ ≥ c ‖p‖P . (3.1)

Note that (3.1) is equivalent to

inf
p∈P\{0}

sup
u∈U

〈Bp, u〉
‖u‖U ‖p‖P

≥ c,

usually called the inf-sup condition or the Babuška-Brezzi condition.
If the problem consists of more constraints, e.g. P = P1 × P2, the verification

of the inf-sup condition from the above theorem may become troublesome. For this
reason we mention the following result for the so-called twofold saddle-point problems.

Theorem 3.2. Let U , P1, P2 be reflexive Banach spaces, B1 : U → P ∗2 , B2 :
P1 → P ∗2 be continuous and linear. Define B : U × P1 → P ∗2 by B(u, p1) := B1u +
B2p1. Then the following are equivalent.

1. There exist constants C, c > 0 such that

‖B′p2‖(U×P1)∗ ≥ c ‖p2‖P2
∀p2 ∈ P2 and ‖p1‖P1

≤ C ‖u‖U ∀(u, p1) ∈ kerB.

2. There exists c > 0 such that

‖B2p1‖P∗2 ≥ c ‖p1‖P1
∀p1 ∈ P1 and ‖B′1p2‖U∗ ≥ c ‖p2‖P2

∀p2 ∈ kerB′2.

3. There exists c > 0 such that

‖B′p2‖(U×P1)∗ ≥ c ‖p2‖P2
∀p2 ∈ P2 and ‖B2p1‖P∗2 ≥ c ‖p1‖P1

∀p1 ∈ P1.

In the following subsections we will apply these abstract results on the particular
problems and suggest examples of finite element spaces.

3.1. Approximation of problem (A). In this subsection we establish the
well-posedness of problem (A)h under requirements on the finite element spaces.

Theorem 3.3. Let L0h, Lh, W h be finite dimensional subspaces of L2
0, L2

0,
W 1,2

0 , respectively, which satisfy the following conditions:
(i) There exists c > 0 such that

sup
ϕ∈W h

〈B2p,ϕ〉
‖ϕ‖1,2

≥ c ‖p‖2 ∀p ∈ Lh;

(ii) {Dϕ; ϕ ∈W h} ⊂ L0h.
Then for every f ∈ L2(Ω;Rd) problem (A)h has a unique solution (Sh, ph,vh) ∈
L0h × Lh ×W h. Further there exists a constant C > 0 independent of f such that

‖Sh‖2 + ‖ph‖2 + ‖vh‖1,2 ≤ C ‖f‖2 .
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A particular choice of spaces that satisfy the assumptions of Theorem 3.3 is based
on the Pk+1/Pk Taylor-Hood velocity-pressure elements.

Corollary 3.4. Let k ≥ 1. Then

L0h := {S ∈ L2
0; S|K ∈ Pk(K)d×d ∀K ∈ Th},

Lh := {p ∈ L2
0 ∩ C(Ω); p|K ∈ Pk(K) ∀K ∈ Th},

W h := {v ∈W 1,2
0 ; v|K ∈ Pk+1(K)d ∀K ∈ Th}

satisfy the hypothesis of Theorem 3.3.

3.2. Approximation of problem (B). Sufficient conditions for the well-po-
sedness of problem (B)h are given in the following theorem.

Theorem 3.5. Let Lh, W h be finite dimensional subspaces of L2, W 1,2
0 , respec-

tively, which satisfy the following conditions:
(i) {Dϕ; ϕ ∈W h} ⊂ Lh;

(ii) There exists c > 0 such that

sup
ϕ∈W h

〈B2(trT),ϕ〉
‖ϕ‖1,2

≥ c ‖trT‖2 ∀T ∈ Lh.

Then for every f ∈ L2(Ω;Rd) problem (B)h has a unique solution (Th,vh) ∈ Lh×W h.
Further there exists a constant C > 0 independent of f such that

‖Th‖2 + ‖vh‖1,2 ≤ C ‖f‖2 .

The assumption (ii) arises from the fact that A is not elliptic on L2. The ellipticity
can be fixed if the estimate

‖trT‖2 ≤ c
∥∥Tδ∥∥

2
∀T ∈ Lh s.t. B1T = 0 in W ∗

h

holds true, which follows from (ii).
We again describe several finite element combinations that satisfy the hypothesis

of Theorem 3.5. The first one is based on the P2+bubble/P1−discontinuous velocity-
pressure approximation.

Corollary 3.6. The spaces

Lh := {T ∈ L2; T|K ∈ P1(K)d×d ∀K ∈ Th},
W h := {v ∈W 1,2

0 ; v|K ∈ P2(K)d ⊕ Bd+1(K)d ∀K ∈ Th},

where Bd+1(K) denotes the one-dimensional space of bubble functions on K, satisfy
the hypothesis of Theorem 3.5.

Another case with a discontinuous pressure space is the Pk+1/Pk−discontinuous
Scott-Vogelius element, which in general leads to unstable approximations, however
under some additional assumptions on the topology of Th the stability has been es-
tablished [8, 6, 9].

Corollary 3.7. Let Th be a barycentrically refined triangulation and k ≥ d.
Then

Lh := {T ∈ L2; T|K ∈ Pk(K)d×d ∀K ∈ Th},
W h := {v ∈W 1,2

0 ; v|K ∈ Pk+1(K)d ∀K ∈ Th}
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satisfy the assumptions of Theorem 3.5.
The last example is based on the edge stabilization of trT and div v. Let Eh

denote the set of edges in Th and JfK the jump of f across a given edge.
Corollary 3.8. Let k ≥ 1 and

Lh := {T ∈ L2; T|K ∈ Pk(K)d×d ∀K ∈ Th},
W h := {v ∈W 1,2

0 ; v|K ∈ Pk+1(K)d ∀K ∈ Th}.

Define the operators C1 : L2 → (L2)∗ and C2 : W 1,2
0 → (W 1,2

0 )∗ by the formulae

〈C1T, ξ〉 :=
∑
E∈Eh

(JtrTK, Jtr ξK)E ,

〈C2v,ϕ〉 :=
∑
E∈Eh

(Jdiv vK, JdivϕK)E .

Then for every f ∈ L2(Ω;Rd) and γ > 0 the problem[
A+ γC1 B′1
B1 γC2

] [
Th
vh

]
=

[
0
f

]
in (Lh)∗

in (W h)∗

has a unique solution (Th,vh) ∈ Lh ×W h. Further there exists a constant C > 0
independent of f and γ such that

‖Th‖2 + ‖vh‖1,2 + γ
∑
E∈Eh

(
‖JtrThK‖2,E + ‖Jdiv vhK‖2,E

)
≤ C ‖f‖2 .

3.3. Approximation of problem (C). In the case of problem (C)h the situa-
tion is similar as in the previous section.

Theorem 3.9. Let L0h, W h, Lh be finite dimensional subspaces of L2
0, W 1,2

0 ,
L2, respectively, which satisfy the following conditions:

(i) {Dϕ; ϕ ∈W h} ⊂ Lh;
(ii) {Tδ; T ∈ Lh} ⊂ L0h;

(iii) There exists c > 0 such that

sup
ϕ∈W h

〈B2(trT),ϕ〉
‖ϕ‖1,2

≥ c ‖trT‖2 ∀T ∈ Lh.

Then for every f ∈ L2(Ω;Rd) problem (C)h has a unique solution (Dh,vh,Th) ∈
L0h ×W h × Lh. Further there exists a constant C > 0 independent of f such that

‖Dh‖2 + ‖vh‖1,2 + ‖Th‖2 ≤ C ‖f‖2 .

For the particular choice of the finite dimensional spaces, one can use the examples
of Lh, W h from Section 3.2 together with L0h := {Tδ; T ∈ Lh}.

4. Numerical results. The discrete problems (A)h–(C)h lead to a system of
nonlinear algebraic equations

R(X) = 0, (4.1)
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where X ∈ RN contains the degrees of freedom. Each component of R is of the form

Ri(X) =
∑
K∈Th

∫
K

rK(X,ϕi) +
∑
E∈Eh

∫
E

rE(X,ϕi), i = 1, . . . N,

where ϕi is the appropriate test function. System (4.1) is linearized by the Newton-
Raphson method and the resulting system is solved by the sparse direct solver UMF-
PACK. The numerical method has been implemented in an in-house C++ code, where
the entries of the linearized matrix ∇R are obtained from the definition of rK and
rE by means of a simple automatic differentiation.

The described approximations have been tested on several model problems. The
constitutive relations under considerations were either the power law or the stress-
power law.

4.1. Stress-power law in a stenosed channel. The first example models
the flow of a stress-power-law fluid through a stenosed channel, whose geometry is
depicted in Figure 4.1. For fixed material parameters ρ = µ = λ = 1, different values

0.2

1/3 1/3

0.1

1

ΓI

ΓW

ΓW

ΓO

Fig. 4.1. Geometry of the stenosed channel.

of r have been used. The following boundary conditions are prescribed:

v = (100x2(0.2− x2), 0) on ΓI ,

v = 0 on ΓW ,

Tn · n = −p+ Sn · n = 0 on ΓO,

v × n = 0 on ΓO.

We used a computational mesh consisting of 2657 triangles and approximation of
problems (A)-(C) with the FE spaces described in Table 4.1. In the cases (B) and
(C) either the edge stabilization or the barycentric refinement were used. Apparently,

(A) (B) (C)
S Pdisc1 T Pdisc1 T Pdisc1

v P2 v P2 v P2

p P1 D Pdisc1
Table 4.1

Tested finite element spaces.

all discrete problems yielded results with negligible differences. Some characteristics
of the results are illustrated in Figures 4.2–4.3.
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Fig. 4.2. Velocity in the middle cross-section (left), along the channel (right).
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Fig. 4.3. Pressure (left) and norm of Dv (right) along the channel.

4.2. Benchmark problem: Flow around cylinder. In the next example
we compared the classical power-law and stress-power-law models on the benchmark
problem of flow around a cylinder [4]. The geometry is depicted in Figure 4.4. The

2.2

0.1

0.2

0.2

0.21

Fig. 4.4. Flow around a cylinder.

following boundary conditions were prescribed:

v =

(
0.3

4x2(0.41− x2)

0.412
, 0

)
on ΓI ,

v = 0 on ΓW ,

Tn · n = −p+ Sn · n = 0 on ΓO,

v × n = 0 on ΓO.

The power-law model was solved using the usual velocity-pressure formulation and
P2/P1 Taylor-Hood elements:

ρ(v · ∇)v − µdiv
(

(1 + λ|Dv|2)
r−2
2 Dv

)
+∇p = ρf , div v = 0.
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For the stress-power-law model we used the formulation (B)h and Pdisc1 /P2 elements
with jump stabilization:

ρ(v · ∇)v − divT = ρf , Dv = µ−1(1 + λµ−2|Tδ|2)nTδ, n =
2− r

2(r − 1)
.

The material parameters are ρ = λ = 1, µ = 2 · 10−3. Due to the small value of µ it
is convenient to substitute T̃ := µ−1T which leads to the system

ρ(v · ∇)v − µdiv T̃ = ρf , Dv = (1 + λ|T̃δ|2)nT̃δ.

We evaluated the following quantities:
• pressure drop ∆p := p(A)− p(B),

• drag coefficient CD := 500

∫
ΓS

Tn · (1, 0)>,

• lift coefficient CL := 500

∫
ΓS

Tn · (0, 1)>,

where A = (0.15, 0.2), B = (0.25, 0.2), ΓS is the surface of the cylinder. The results
obtained on a mesh consisting of 3926 triangles are given in Figures 4.5–4.6. For
r = 2 they are compared to the reference values computed in [4] for the Navier-Stokes
system.
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Fig. 4.5. Flow around cylinder: Pressure drop (left), drag coefficient (right).
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Fig. 4.6. Flow around cylinder: Lift coefficient.

For given r 6= 2 the velocity fields of power-law and stress-power-law model show
no differences while the pressure behaves differently. In particular, in the zone before
the cylinder the pressure of the later model is always smaller, as can be seen in
Figure 4.8.
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Fig. 4.7. Velocity v1 at x2 = 0.2: power law (left), stress-power law (right).
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