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GEOMETRIC PROPERTIES OF PARTICLE ENSEMBLES IN TERMS
OF THEIR SET COVARIANCE

WILFRIED GILLE∗

Abstract. The set covariance C(r) is a basic function in stochastic geometry,frequently applied
in the field of image analysis. On the other hand, C(r) is interrelated to the real space structure
functions defined in the field of small-angle-scattering (SAS). Fundamental results of stochastic
geometry can be transformed to the field of SAS. By use of integral transformation, scattering
data of sample materials lead to the real space structure functions. These functions reflect specific
geometric properties of the sample material.
Let the order range of a sample be denoted by L. Let γ = γ(r), 0 ≤ r ≤ L, γ(r) ≡ 0 if L < r, be
the SAS correlation function of an isotropic two-phase ensemble of homogeneous, hard particles of
volume fraction c. Then, γ(r) = [C(r)/c− c]/(1− c). It is shown that the first zero point γ(r1) = 0,
0 < r1 ≤ L, can be traced back to four terms: To c of the particles, to a term γ0(r1) involving the
correlation function γ0(r) of the isolated single particle, to a term PAB (second order particle shape
specific probability) and to the particle to particle pair correlation function g(r). The obtained
formula (a quasi-diluted particle ensemble represents a special case) is exemplified for the model
correlation function of a Dead Leaves model and for selected experimental cases.
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1. Introduction. In small-angle scattering (SAS), the intensity scattered by a
sample is recorded as depending on the scattering vector. Scattering experiments
of isotropic sample materials yield isotropic scattering patterns I = I(h), where h
denotes the amount of the scattering vector. The SAS correlation function (CF)
γ = γ(r) is a basic structure function for real space data interpretation of a large
class of scattering experiments. Fourier transformation of I(h) yields γ(r), [1],

γ(r) =

∫ L

0

h2I(h) · sin(hr)/(hr)dh
/∫ L

0

h2I(h)dh.

For a specific sample, the order range L is an important input parameter. Compared with
the field of image analysis, SAS does not start from image material of a sample for an L.
However, based on I(h) of a particle ensemble, see [2], the function γ is compared with
geometric models, described by specific model parameters. The particle volume fraction c
always belongs to the set of such parameters. Let n be the number of hard particles per
volume unit and V0 the mean particle volume. Then, c = n · V0. In fact, based on γ(r), c
of isotropic random two-phase systems can be determined from a relative measurement of
I(h).
Based on these approaches, it is an experimentally established fact that γ(r) involves one
or more zero points r = r1, r = r2, ..., see Figs. 1.1 and 1.2. The theoretical background
of the first zero point r = r1 will be analyzed here. The investigation and interpretation of
this first zero for a random two-phase system has been a long-standing problem in stochastic
geometry and SAS. A lot of geometric parameters influence the zero points r = ri. An
interpretation of the equation r = r1 will be given in this article.
After a theoretical part, (2.4) will be a main result, followed by applications. Three types
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of particle ensembles of nanometric particles, occurring in materials research, have been se-
lected: First, a test with simulated data of a Dead Leaves model (DLm) is explained. Data
recorded in SAS-laboratory by the author on VYCOR glass with CuKα-radiation are ana-
lyzed in section 3. Furthermore, data of convex particles from international SAS conferences
measured by use of synchrotron radiation are discussed. For equally sized hemispheres, the
particle to particle correlation is discussed in section 4.

P

r=r
1

Fig. 1.1. Interpretation of the first zero of the CF, see Fig. 1.2 in a plane section: The random
test point P in a particle is the center of a circle of radius r = r1. The area fraction c equals to [the
mean total length of the boldly drawn parts of the perimeter] over [2πr1]. In the spatial case, parts
of surface areas are operated with. Then, the denominator term is (4πr21).
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Fig. 1.2. The functions γ(r) and Z(r) = C(r)/c for a Dead leaves model, i.e. for a sim-
ulated ensemble of spheres. Overlapping and touching of the particles are not possible. For the
interpretation of the length r1 in the equation γ(r1) = 0, see Fig. 1.1. Based on (2.1), Z(r1) = c.
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2. Basic equations for random two-phase systems of hard, convex par-
ticles. As a two-phase particles system may involve several order ranges Li, a well-defined
L must be specified [3]. Based on I(h), the sample CF γ = γ(r, L) results via a Fourier
transformation of band limited data. The relation γ(r, L) ≡ 0, if L < r, is incorporated into
well-tested computer programs for such integral transformations. For the sample CF, the
abbreviations γ(r) or γ are used instead of γ(r, L).
The CF is the convolution square of the (electron) density fluctuation of the sample. Start-
ing from a diluted system of hard particles, the electron density fluctuation increases with
increasing particle number per sample volume. So, γ(r) will possess negative values, −c/(1−
c) < γ(r) < 0, at certain abscissas r, 0 ≤ r1 < r, see Fig. 1.2. To illustrate this in detail,
a plane section is considered in Fig. 1. An ensemble of equally sized spheres, possessing a
well-defined volume fraction c, is intersected by a plane.
A random point P (the center of a circle of radius r1) is uniformly distributed in each particle.
If r = r1, then the mean length ratio, [sum of the boldly-drawn parts of the perimeter] over
[the whole circle perimeter] equals c, see (2.1). This deliberation is a special case of Rosiwal’s
linear integration principle, see [4]. Fig. 1.2 involves a three-dimensional simulation. The
same will be argued in connection with the later micrograph, see Fig. 3.2.

As early as in 1951, the physicist Porod [1] established a fundamental relationship
between the particle volume fraction c, 0 ≤ c < 1, and the SAS structure functions Z(r)
(the so-called function of occupancy) and γ(r),

Z(r) = (1− c) · γ(r) + c. (2.1)

The properties Z(0) = 1 and Z(∞) = c are fulfilled. Furthermore, (2.1) yields c = Z(r1).
This special case connects γ(r1), Z(r1), r1 and c. The probability Z(r) is connected with
the isotropized set covariance C(r) of the particle system via C(r) = c · Z(r), see [4].
If there are only a few small particles embedded in a large homogeneous sample volume, then
c → 0 and Z(r) ≈ γ(r), see (2.1). In such a case, the length L has large values (sometimes
undetectable by use of SAS experiments). Then, zeros γ(ri) = 0 exist at relatively large
lengths ri. Larger volume fractions, say c > 0.2, lead to smaller ri, if all the other parameters
remain constant. Furthermore, there is the special case of the so-called quasi-diluted particle
system, see Fig. 2.1.
In the following section, the general case described by (2.1), without any restrictions to the
particle to particle distances, is considered. These distances are characterized by the particle
to particle (pair) correlation function g(r). The connection of these parameters with the
first zero r = r1 of the CF will be investigated in detail in the next subsections.

2.1. A basic equation for the function γ = γ(r, L) . The length r1 is closely
interrelated with the function g(r) of the single particles. Let these single particles possess
a mean correlation function γ0(r). Then, see [5],

γ(r) =
1

1− c
·
(
γ0(r)− c+

c

V0
·
∫ L

0

4πl2g(l) · PAB(r, l)dl

)
. (2.2)

Here, V0 denotes the single particle volume, and the function PAB(r, l) in the integrand
represents a special geometric probability, depending on size and shape of the particles: the
probability of finding two points placed in two single particles of maximum diameter L0,
whose centers are separated by a distance l.
In detail, for L = L0 the term PAB(r, l) defines the following: For two single particles A
and B, whose centers are separated by a distance l, L0 ≤ l, the function PAB(r, l, L0) is the
geometric probability that a point XB which is placed at a fixed distance r from a point XA

in A is in particle B. Analytic expressions of PAB have been established for spheres [4]. The
integration limits of the integral in (2.2) have to reflect all possible minimum and maximum
distances between all pairs of particles A and B. In the special case c = 0 - independent of
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the functions g(r) and PAB(r, l) and of the integration limits - γ = γ0 results. All terms in-
volved in (2.2) have been checked and applied in experimental cases [5] and [6]. This implies
that the interpretation of the zero-case γ(r1) = 0 is not a trivial problem, because several
geometric parameters are closely interrelated.

In practice, the volume fraction c is always connected with an order range L of the
particle arrangement [3]. It is indispensable to fix a selected L in order to obtain the
scattering pattern, impacted by the parameters L, c, γ0, V0, g and PAB .

2.2. Interpretation of the first zero of the sample correlation function,
r = r1. The order relation 0 ≤ c < 1 must be fulfilled, as a complete filling of the space
with particles (if possible at all) contradicts the assumption of an isotropic sample. In the
case γ(r1) = 0, it follows from (2.1)

0 ≡ γ0(r1)− c+
c

V0
·
∫ ∞

0

4πl2g(l) · PAB(r1, l)dl. (2.3)

Thus, c is explicitly defined in terms of r1, γ0, V0, g and PAB ,

c =
γ0(r1)

1− 1
V0

·
∫∞
0

4πl2g(l) · PAB(r1, l)dl
. (2.4)

Equation (2.4) is an essential result. Several parameters are interrelated. A more simple
equation could hardly be expected. In the following, special cases for the parameters involved
in (2.4) will be analyzed. Taking into account a largest particle diameter L0, the particle

volume V0 results from V0 =
∫ L0

0
4πr2γ0(r)dr.

The connection (2.4) can be verified by a numerical calculation for a Dead Leaves model
(DLm) with spherical primary grains of constant diameter d, Fig. 1.2. Assuming a sphere
diameter d = L0 = 1, the numerical calculation yields r1 = 0.768 ·d. In detail, γ0(r1) = 0.075
results. After inserting all parameters into (2.4), the theoretically expected value c = 1/8
results [7].
Of course, (2.4) remains valid in the special case c → 0. This is closely connected with
the single particle CF γ0(r), which disappears if L0 ≤ r < ∞. The denominator term
of (2.4) equals 1, because the integral term disappears. The only one zero of the CF is
given by γ0(L0) = 0. Thus, in this limiting case, r1 = L0 follows. Consequently, c =
γ0(L0)/(1− 0/V0) ≡ 0 results.
Furthermore, (2.4) fulfills the case of a quasi-diluted particle arrangement analyzed in the
next subsection.

2.3. Quasi-diluted particle ensembles. This interesting special case of the par-
ticle to particle interaction results if the smallest chord length between any two particles
lm = min(li) is larger than the maximum diameter of the largest particle L0 = max(Li). A
case with three different particles is illustrated in Fig. 2.1, max(Li) < min(li).
Here, g(l) = 0 if 0 ≤ l < L0 + lm. Now, taking into account r1 ≤ L0 + lm, the integral term
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Fig. 2.1. Exemplification of a quasi-diluted particle arrangement for three particles.



366 W. GILLE

T (r) in (2.4),

T (r) =

∫ ∞

L0+lm

4πl2 · g(l) · PAB(r, l)dl, (2.5)

disappears at r = r1. It follows T (r1) = 0. On the other hand, indeed γ(r) = γ0(r), if
0 ≤ r ≤ L0. Operating with the zero of γ(r) at r = r1, γ0(r1) = c follows from (2.2).
Inserting these special results into (2.4), c = γ0(r1)/(1− 0/V0) = γ0(r1) is obtained.

3. Application in experimental cases. In the following, two independent prac-
tical applications are explained. While the first one is based on an author measurement
in the SAS laboratory at the university of Halle with CuKα–radiation [19], the second one
was performed in Grenoble by other scientists with synchrotron radiation [14, 15], at a time
when the author was theoretically establishing the fundamentals of (2.4).

3.1. VYCOR glass data. Based on the scattering pattern of a VYCOR glass of
type 7930 sample [3], an ideal isotropic two-phase sample, the function γ(r) has been ob-
tained, Fig. 3.1. Assuming long, nearly cylindrical pores in an isotropic uniform random
spatial arrangement, after intermediate calculations for L = 30 nm with r1 = 8 nm, (2.4)
yield the volume fraction c = 0.35. This result is in agreement with the results obtained
by two other experimental methods, namely: nitrogen adsorption, mercury intrusion and
additionally from the theoretical approach based on the density of the components of this
glass, (for more details see figure 4 in [3]).
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Fig. 3.1. The SAS CF of VYCOR–7930 glass: Based on L = 30 nm, the first zero of the SAS
CF is at r = r1 = 8 nm. The second zero, r = r2 ≈ 18 nm, is not discussed.

3.2. Ni-base alloy. Based on scattering experiments, performed at the Microfocus
beamline (ID13) of the European Synchotron Radiation Facility in Grenoble in 2001/2004,
tightly packed phases of a Ni-base alloy have been investigated [13], see the micrograph
Fig. 3.2. For explaining the approach used see Fig. 1.1, and furthermore, for explaining the
concept of chord length distributions [16, 17, 20] in detail an original micrograph, see [14],
has been supplemented: The modification shows a straight test line with chord segments li
and mi and several test circles with the radius r = r1 = 40 nm.
Some remarks are useful: Based on a direct analysis of Fig. 3.2, considered as a planar
section, the particle phase volume fraction is expected to be smaller than 70%. However,
due to the preparation procedure for obtaining the micrograph, the surface regions have been
modified. There exists a dilution of particle density near the surface area, at least up to a
depth of t < 0.3 µm. Thus, the micrograph is far from being a plane section.

From the recorded scattering curve of the alloy [15], an SAS CF possessing a clear neg-
ative region starting with the zero at r1 = 40 nm results, Fig. 3.3. Here, L = 150 nm, which
means that a micrograph of edge lengths (150 nm × 150 nm) involves all the geometric
information about the spatial arrangement of the γ′-cubes. The whole particle system can
be approximated by a tightly packed isotropic cube model (nearly constant particle sizes),
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Fig. 3.2. Micrograph illustrating the local microstructure of a W-rich Ni-base γ/γ′-alloy [14,
15, 18]: The shape of the γ′-particles can be approximated by parallelepipeds.

possessing a volume fraction c = c(L). Based on the theory presented, via (2.4) a volume
fraction of the particle phase c = c(L) = 0.7 follows and for the matrix 1− c(L) = 0.3.
These results are in agreement with other stereological parameters, that result from Figs. 3.2
and 3.3: The mean chord length inside the cubes equals l = 42 nm and that of the inter-
mediate spaces is m ≈ 18 nm. Together with the first derivative γ′(0) = −1/(13 nm), these
parameters fulfill the equation |γ′(0)| = 1/l+1/m and agree with a stereological analysis of
the micrograph Fig. 3.2. The pair correlation can be approximated by the parameter model
described by Thiele [6], see also section 4.1. and Fig. 3 in [3].
Altogether, approximating the particle shape by the cube model, inserting the minimum
edge length of the γ′ particles amin = 50 nm and assuming an isotropic uniform random
arrangement, a volume fraction of the particle phase c = c(L) = 0.7 is obtained via this
interpretation of the CF.
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Fig. 3.3. The SAS CF function possesses a zero at r = r1 = 40 nm and reflects details of the
geometry of the γ′-phase.

4. About the function PAB(r, l). The interpretation of the applications given is
mainly based on the introduction of the function PAB in (2.2). More details about this
function are explained now.
The probability PAB describes the essential part of the particle to particle correlation. This is
a second order particle to particle correlation function, which - in the general case - includes
a combined translation and rotation of two particles A and B.
A fixed position of A and B is considered. Inside B there is a certain part S(r) of the surface
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area 4πr2 of the sampling sphere of radius r centered at point P in the particle A. For the
elementary plane case see Fig. 1.1. The term PAB is given by the averaged second order
particle to particle overlapping

PAB(r) =
S(r, l, ϑ1, ϕ1, ϑ2, ϕ2)

4πr2
. (4.1)

In contrast to the first order particle correlation, here the determination of the probability
PAB requires a mutual rotation of the particles A and B. For each constant r, four direction
angles ϑ1, ϕ1, ϑ2, ϕ2 define the positions of A and B in space.
This equation can be handled numerically for any particle shape, even if A and B differ in
size and shape. This requires the analysis of a sequence of gij(r) pair correlation functions,
describing the distances between the corresponding particles of certain shapes Ai and Bj .

It follows an example of utilization for hemispheres of diameter d, possessing an isotropic
uniform random spatial orientation:
Here, PAB(r, l, d) is given by

PAB(r, l, d) =
1

2
·
∫ ϑo

0

γ0
(√

r2 + l2 − 2r · l · cos(ϑ), d
)
· sin(ϑ)dϑ. (4.2)

The upper integration limit ϑo = ϑo(r, l, d) defines the real volume overlapping, if the in-
tegrand possesses positive real values. Thus, the probability PAB is traced back to the CF
γ0(r, d) of a single hemisphere [10]. The upper integration limit in (4.2) is defined by the
geometric overlapping conditions between the particles A and B. Based on (4.2) and (4.3),
PAB has been obtained [11], operating with the isotropized normalized CF of a hemisphere
γ = γ0(r, d), see the following Mathematica expression,
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Fig. 4.1. The function PAB(r, l, d) for hemispheres with d = 1: Two different particle to
particle distances l, l = 1 and l = 3, have been inserted.

γ[r , d ] = Which
[
0 ≤ r ≤ d

2
, 1− 9r

4d
+

r3
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+

3
(
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4

)
sin−1

(
r
d

)
2πrd

, True, 0
]

+ Which
[d
2
≤ r ≤ d,

3
(
d2

4
− r2

)
cos−1

(
r
d

)
2πrd

, True, 0
]

(4.3)

+ Which
[
0 ≤ r ≤ d,

3
(
2d2

4
+ r2

)√
d2 − r2

4πd3
, T rue, 0

]
.

Two special probability cases, PAB(r, 1, 1) and PAB(r, 3, 1), have been analyzed in Fig. 4.1.
If d ≪ l, the maximum max[PAB(r, l, d)] exists at r ≈ l. The exact agreement r = l results
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in the limiting case l → ∞. Based on PAB(r, l, d), see Fig. 4.1, the scattering pattern I(h)
of an isotropic arrangement of hemispheres is defined based on (2.2).

5. Discussion and conclusions. In a way, the data analysis of a scattering pattern
via its sample CF can be compared with the stereological analysis of image material (image
processing). Of course, the latter is a more direct approach, whereas the interpretation of
the SAS CF requires more assumptions (isotropy, two-phase system, mainly hard, convex
particles/pores, specific order range L) compared with image processing. For this it is clear
that the assumption of a specific L is indirectly also involved in each procedure of image
processing: Each actual image automatically involves a specific L, given by the fixed mag-
nification of an image (micrograph).

The volume fraction c = c(L) (i.e., in the case of porous materials, the porosity) is
reflected in the behavior of all SAS structure functions: On the one hand, there are methods
mainly based on an absolute measurement of the scattering intensity I(h). Furthermore,
there exists another group of methods, based on relative intensity measurement. This ar-
ticle adds a further approach to the latter group. The volume fraction of hard particles
is explicitly given by (2.4), where r1 is a deciding experimental parameter. Thus, the new
connection (2.4) joins the sequence of existing approaches for determining the volume frac-
tion of two-phase systems via scattering experiments. It would be interesting to compare all
these methods and discuss advantages and disadvantages. However, this would require an
essentially longer paper.
Contrary to the pure chord length analysis [2], Rosiwals’s linear integration principle, which
has been modified by a method mainly based on γ′(0), see [3], and the considerations per-
formed in [5] for non-convex particles and [16] and the papers [17]–[20], here the pair corre-
lation function g(r) is directly included. The geometric probability PAB(r, l), which can be
determined for the existing particle shape in question, traces the determination of c back to
the pair correlation between two particles.
The interpretation of the first zero of the SAS CF proves to be a complex matter. So, the
length r = r1 is a characteristic parameter of the SAS CF. The length r1 is influenced by the
whole geometry of the particle arrangement, the single particles and their spatial arrange-
ment.
Mainly based on the parameter r1, but with additional information, it is possible to estimate
the particle volume fraction c. Here, besides the pair correlation g(r) a certain function PAB

is involved. In the case of spherical particles, there exists a simple analytic representation
of PAB . For other particle shapes, like hemispheres, tetrahedrons, circular cylinders, paral-
lelepipeds and right circular cones, PAB can be obtained numerically, see the example given
by (4.3) and Fig. 4.1.
The examples demonstrate that the approach can be used for determining the volume frac-
tion of two-phase materials if the particle shape is known a priori.

Acknowledgments. The author thanks the reviewer very much for the report. Tak-
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really can be arranged (belong) to the topic image processing of the conference. This holds
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