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THE LOCALIZED REDUCED BASIS MULTISCALE METHOD

FELIX ALBRECHT∗, BERNARD HAASDONK† , SVEN KAULMANN† , AND MARIO

OHLBERGER∗

Abstract. In this paper we introduce the Localized Reduced Basis Multiscale (LRBMS) method
for parameter dependent heterogeneous elliptic multiscale problems. The LRBMS method brings
together ideas from both Reduced Basis methods to efficiently solve parametrized problems and from
multiscale methods in order to deal with complex heterogeneities and large domains. Experiments
on 2D and real world 3D data demonstrate the performance of the approach.
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1. Introduction. We are interested in efficiently simulating two-phase flow of
two immiscible fluids (e.g., oil and water) in a porous medium Ω ⊂ Rd=2,3. The global
pressure formulation for two-phase flow in porous media is given as follows. Given an
end time T ∈ R+, find a global pressure p : Ω × [0, T ] → R and a phase saturation
s : Ω× [0, T ]→ R, such that

−∇·
(
λ(s)k∇p

)
= f in Ω× [0, T ], (1.1)

Φ∂ts+∇·
(
Fw(s,∇p)

)
−∇·

(
D(s)∇s

)
= 0 in Ω× [0, T ] (1.2)

with suitable boundary and initial conditions. The permeability field k ∈ L∞(Ω)d×d

may be complex heterogeneous for interesting domains. The total mobility is given by
λ(s) ∈ L∞(Ω), depending smoothly on the saturation s. The convective flux Fw and
the diffusive flux D involve the capillary pressure, the fractional flow rates and the
phase mobilities (see [6] for details). Discretizing the above equations in time leads to
a system, where an elliptic equation of type (1.1) has to be solved in each time step
for different saturations s. Using standard methods this can become very costly, since
a highly resolved discretization of (1.1) is required in each time step. In this paper we
introduce the Localized Reduced Basis Multiscale (LRBMS) method to efficiently solve
(1.1) for many saturations s and highly heterogeneous permeabilities k. Our approach
follows the ideas from [8] with modifications concerning the underlying approximation
spaces and a posteriori error estimates. It thereby combines ideas from reduced basis
methods [11] with efficient numerical multiscale schemes as proposed in [1]. The
LRBMS method allows us to efficiently and reliably approximate solutions of (1.1)
for all time steps with the need to only solve (1.1) very few times. For a more detailed
introduction to this model reduction approach for multiscale problems we refer to [9].

2. The Localized Reduced Basis Multiscale Method. Let Ω ⊂ Rd be a
connected domain with polygonal boundary ∂Ω = ΓD ∪ ΓN , where ΓD and ΓN with
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ΓD ∩ΓN = ∅ denote the Dirichlet and Neumann boundaries, respectively. Let further
P ⊂ Rp denote a bounded set of possible parameters and µ,µ ∈ P parameter vectors.
As motivated in the introduction, the elliptic equation (1.1) will serve as our model
problem. To be more precise, we allow the data functions λ(x; µ) and f(x; µ) to
be parameter dependent and we assume suitable parameter dependent Dirichlet and
Neumann values gD(x; µ) and gN (x; µ), respectively. The symbol nΩ ∈ Rd will denote
the unit outward normal to Ω.

2.1. Fine scale Discontinuous Galerkin approximation. We discretize the
elliptic problem by an Interior Penalty Discontinuous Galerkin (DG) method [3]. This
fine scale approximation will provide the reference solution for our method as well as
snapshots that are used to generate the basis of our coarse approximation space. Let
τh be an admissible triangulation of Ω with codim 0 entities t ∈ τh (elements) and
grid width h := maxt∈τh diam(t). We call τh a fine triangulation. We denote the
set of codim 1 entities (facets) which lie on ΓD by εD, the set of facets which lie on
ΓN by εN and the set of facets which do not lie on ∂Ω by εI . We also denote the
width of a facet e ∈ εI ∪ εD ∪ εN by he := diam(e). We call a facet e ∈ εI inner
facet and a facet e ∈ eD ∪ eN boundary facet. On τh we define the fine DG space
Vkh :=

{
v ∈ L2(Ω)

∣∣v|t ∈ Pk(t) ∀t ∈ τh
}
, where Pk denotes the space of polynomials

of degree at most k ∈ N0. Since Vkh 6⊂ H1(Ω) we have a non-conforming discretization,
and functions v ∈ Vkh are two-valued on inner facets. For v ∈ Vkh we define its jump by
[[v]] := v|t− v|s and its mean by {{v}} := 1

2 (v|t + v|s) on an inner facet e = t∩ s ∈ εI
and by [[v]] := v and {{v}} := v on a boundary facet, respectively. Note, that for all
inner facets e = t ∩ s, we assume a prescribed order of the elements t and s, such
that the definition of the jump and the facets normal ne ∈ Rd is well-defined. Let
bh : V1

h × V1
h × P → R and lh : V1

h × P denote the Interior Penalty DG bilinear form
and linear functional respectively, given by

bh(u, v; µ) : =
∑
t∈τh

∫
t

λ(µ)k∇u · ∇v dx +
∑

e∈εI∪εD

∫
e

σe(λ(µ),k)
he

[[u]] [[v]] ds,

−
∑

e∈εI∪εD

[∫
e

{{λ(µ)k∇u ·ne}} [[v]] ds +
∫
e

{{λ(µ)k∇v ·ne}} [[u]] ds

]

lh(v; µ) : =
∑
t∈τh

∫
t

f(µ)v dx

+
∑
e∈εD

∫
e

(
σe(λ(µ),k)

he
v − λ(µ)k∇v ·ne

)
gD(µ) ds +

∑
e∈εN

∫
e

gN (µ)v ds,

where the local penalty function σe : Ω→ R+ is chosen constant free and linear with
respect to its first argument as proposed in [2].

Definition 2.1 (Fine scale Discontinuous Galerkin approximation). Given a
parameter µ ∈ P, determine ph(µ) ∈ V1

h such that

bh(ph(µ), vh; µ) = lh(vh; µ) for all vh ∈ V1
h. (2.1)

Problem (2.1) has a unique solution by the Lax-Milgram theorem since bh is con-
tinuous and coercive and lh is continuous and bounded if the data functions and the
local penalty function are chosen accordingly [3].
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2.2. Coarse scale Reduced Basis approximation. The main idea of our
method is to introduce a so called reduced broken space WN ⊂ Vkh which is associated
with a coarse triangulation TH of Ω and spanned by local basis function. These
local basis functions can for instance be obtained by localizing solutions of (2.1) to
the individual elements of the coarse triangulation. Due to these basis functions
the reduced broken space incorporates the features of the fine scale while being of
much lower dimension than the fine DG space. Given a fine triangulation τh let TH
be a coarse triangulation. By this we mean that elements T ∈ TH are each made
up of a connected set of fine elements t ∈ τTh := τh ∩ T , in such a way, that each
fine element t ∈ τh lies inside exactly one coarse element T ∈ TH . We introduce
H := maxT∈TH diam(T ) to denote the grid width of TH . Given a local basis ΦT :=
{ϕT1 , . . . , ϕTNT } of NT ∈ N basis functions ϕTi with supp(ϕTi ) ⊆ T for all 1 ≤ i ≤ NT

on each coarse element T ∈ TH we define the local reduced spaces WT
NT ⊂ L2(T )

by WT
NT := span(ΦT ) for all T ∈ TH and the reduced broken space WN ⊂ Vkh by

WN := span(
⋃
T∈TH W

T
NT ) with dimension N :=

∑
T∈TH N

T .
Definition 2.2 (Localized Reduced Basis Multiscale approximation). Given bh

and and lh as in Definition 2.1 the Localized Reduced Basis Multiscale approximation
of our problem reads: Given a parameter µ ∈ P, determine pN (µ) ∈ WN , such that

bh(pN (µ), vN ; µ) = lh(vN ; µ) for all vN ∈ WN .

3. A posteriori error analysis. We will now present an efficient residual based
a posteriori estimate for the error between the LRBMS approximation and the fine
DG approximation in the energy norm induced by bh. The following derivations are
an instantiation of the general RB framework, e.g. presented in [11]. For our analysis
and the offline/online decomposition of the LRBMS approximation (see Section 4) we
assume bh and lh to be parameter separable, i.e.

bh(u, v; µ) =
Qb∑
q=1

Θq
b(µ)bqh(u, v) and lh(v; µ) =

Ql∑
q=1

Θq
l (µ)lqh(v), (3.1)

where Θq
b ,Θ

q
l : P → R+ denote the Qb ∈ N and Ql ∈ N coefficients of bh and lh and

bqh : Vkh×Vkh → R and lqh : Vkh → R denote the parameter independent components of bh
and lh, respectively. This assumption can be satisfied by considering correspondingly
separable data functions. In the more general case of non-separable parametric data
functions and possibly nonlinear bh and lh a similar approximate decomposition can
be achieved by applying the Empirical Interpolation technique [4, 7].

Definition 3.1 (Energy scalar product and norm). For a given parameter µ ∈ P
we define the energy scalar product (·, ·)µ : Vkh ×Vkh → R and its induced energy norm
||·||µ : Vkh → R+ by

(u, v)µ := bh(u, v; µ) and ||u||µ :=
√

(u, u)µ. (3.2)

For parameters µ,µ ∈ P the norms ||·||µ and ||·||µ are equivalent in the sense that√
αµ(µ)||u||µ ≤ ||u||µ ≤

√
γµ(µ)||u||µ (3.3)
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for all u ∈ Vkh , where αµ(µ), γµ(µ) : P → R+ are given by

αµ(µ) :=
Qb

min
q=1

Θq
b(µ)

Θq
b(µ)

and γµ(µ) :=
Qbmax
q=1

Θq
b(µ)

Θq
b(µ)

. (3.4)

The norm equivalence (3.3) is obtained by combining the definition of the energy
norm (3.2) and the decomposition of bh (3.1). The constant αµ is evaluated using the
so-called min−θ approach [11].

For the RB error analysis we introduce the residual and its Riesz-representative.
For a given function u ∈ Vkh let the residual rh[u] : Vkh × P → R be given by

rh[u](v; µ) : = lh(v; µ)− bh(u, v; µ) for all v ∈ Vkh

and its Riesz-representative ru(µ) ∈ Vkh , given a parameter µ ∈ P, such that

(ru(µ), v)µ = rh[u](v; µ) for all v ∈ Vkh . (3.5)

The energy norm of the residual serves as the actual error estimator:
Theorem 3.2 (Residual based a posteriori error estimate). Given parameters

µ,µ ∈ P the energy norm of the Riesz-representative to a given LRBMS approxima-
tion pN (µ) is an efficient a posteriori error estimate in the sense that

1√
γµ(µ)

∣∣∣∣rpN (µ)(µ)
∣∣∣∣

µ
≤ ||ph(µ)− pN (µ)||µ ≤ 1√

αµ(µ)

∣∣∣∣rpN (µ)(µ)
∣∣∣∣

µ
.

Proof. Both inequalities are obtained by using the definition of the energy norm
(3.2), the error identity bh(eh(µ), v; µ) = rh[pN (µ)](v; µ) for all v ∈ Vkh , the defini-
tion of the Riesz-representative (3.5), the Cauchy-Schwarz inequality and the norm
equivalence (3.3).

4. Offline/online decomposition. One of the key benefits of our method is
the fact that we precompute all parameter independent quantities in a preparatory
offline step, which is of polynomial order in dim(Vkh). During the online phase of the
simulation, a LRBMS approximation is then quickly obtained in complexity polyno-
mial in dim(WN ) which is independent of h. This holds true also for the evaluation
of the error estimator.

During the offline-phase, we determine a basis ΦN = {ϕ1, . . . , ϕN} of WN (see
Definition 5.1 for a possible choice of ΦN ) and then proceed as in stationary elliptic RB
methods [11]. We precompute the parameter independent Gram-matrices bq ∈ RN×N
for each component of bh and the reduced vectors lq ∈ RN for each component of lh,
given by (bq)i,j := bqh(ϕi, ϕj) for all 1 ≤ i, j ≤ N and 1 ≤ q ≤ Qb and (lq)j := lqh(ϕj)
for all 1 ≤ j ≤ N and 1 ≤ q ≤ Ql. It is worth noting that since the basis functions ϕi
have a local support the computation of the above quantities is only of order τTh and
can in addition be easily parallelized. In the online-phase, given a parameter µ ∈ P,
we obtain the reduced system matrix b(µ) ∈ RN×N and the reduced right hand side

l(µ) ∈ RN by b(µ) =
∑Qb
q=1 Θq

b(µ)bq and lh(µ) =
∑Ql
q=1 Θq

l (µ)lq and the reduced
vector of Degrees of Freedom (DoF) p(µ) ∈ RN as the solution of b(µ) · p(µ) = l(µ)
with a computational complexity independent of h.

We derive a similar decomposition of the Riesz-representative for any function
u =

∑N
i=1 uiϕi ∈ WN using (3.5), ru(µ) =

∑Qr
q=1 Θq

r(µ)rqh, where the coefficients Θq
r
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depend on the coefficients of bh and lh and the DoFs ui and the components rqh are
solutions to problems of type

(rqh, vh)
µ

= ljh(vh), or (rqh, vh)
µ

= bjh(ϕi, vh), for all vh ∈ Vkh

for all combinations of 1 ≤ i ≤ N and 1 ≤ j ≤ Qb, Ql. In the offline-phase we
precompute these parameter independent components rqh for all 1 ≤ q ≤ Qr as well
as the Gram-matrix g ∈ RQr×Qr , given by

(
g
)
i,j

:= bh(rih, r
j
h; µ). It is worth noting

that, again, these computations are completely independent of each other and can
thus be easily parallelized. Given a parameter µ ∈ P and a LRBMS approxima-
tion pN (µ) ∈ WN we compute the constants αµ(µ), γµ(µ) ∈ R from (3.4) and the
coefficient vector Θr(µ) ∈ RQr , given by

(
Θr(µ)

)
j

:= Θj
r(µ) for all 1 ≤ j ≤ Qr,

to obtain the error estimator with a computational complexity independent of h:∣∣∣∣rpN (µ)(µ)
∣∣∣∣

µ
=
√

Θr(µ)tg Θr(µ).

5. Numerical experiments. In our experiments we obtain the reduced broken
space WN by the following algorithm combining a localized variant of the Greedy
algorithm [12] with a final compression step by a principal component analysis (PCA)
analog to [8].

Definition 5.1 (Localized Greedy). Given a finite set of training parameters
S ⊂ P, a maximum basis size Nmax ∈ N, an error tolerance ∆error ∈ R+ and a PCA
tolerance ∆PCA ∈ R+, the following algorithm produces a reduced broken space WN :

(i) Pick a parameter µ0 ∈ S and initialize the local bases by ΦT(0) := ∅ and set
NT

(0) = 0 for all T ∈ TH and k = 1.
(ii) Given local bases ΦT(k−1) of size NT

(k−1) ∈ N for all T ∈ TH and a parameter
µk−1 ∈ S, compute a global fine DG snapshot ph(µk−1) ∈ Vkh and set the
extended local bases as ΦT(k) := ΦT(k−1) ∪ {ph(µk−1)

∣∣
T
} with size NT

(k) :=
NT

(k−1) + 1 for all T ∈ TH . Set the global basis as Φ(k) :=
⋃
T∈TH Φ

T
(k) of size

N(k) :=
∑
T∈TH N

T
(k) and compute all offline quantities for this basis.

(iii) Compute LRBMS approximations pN (µ) ∈ WN(k) for all training parameters
µ ∈ S using the current basis and evaluate the error estimator to find the
parameter µ(k) ∈ S which maximizes the error estimator.

(iv) IF N(k) < Nmax and if the estimated error for pN (µ(k)) is larger than ∆error:
Set k := k + 1 and repeat from (ii).

ELSE:
Apply the PCA to ΦT(k) with tolerance ∆PCA on each T ∈ TH to obtain the
localized orthogonalized reduced bases ΦT of size NT ≤ NT

(k) on each
T ∈ TH .

(v) Set the global basis as Φ :=
⋃
T∈TH Φ

T of size N: =
∑
T∈TH N

T and compute
all offline quantities for this basis.

In the following we will demonstrate the performance of our approach using two
different examples which fit in the framework of our elliptic problem. The first exam-
ple, the 2D thermal block example, is easily scalable concerning parameter and spatial
complexity and is therefore well-suited to highlight the basic principle of our method:
The scaling between offline and online cost. The second example is much closer to
real-world applications: Here we use 3D real-world data taken from the SPE10 bench-
mark problem [10], putting our method in the context of two-phase flow equations and
multiscale problems. All implementations are realized within the software framework
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DUNE [5].

Fig. 5.1. Solution of the ther-
malblock problem with isolines for µ =
(3, 6, 9, 2, 5, 8, 1, 4, 7, 10, 3, 6, 9, 2, 5, 8)′.
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Fig. 5.2. Number of snapshots needed against
number of subdomains during the generation of the
reduced basis with the Greedy algorithm for differ-
ent coarse triangulations

5.1. The Thermal Block Example. In this example, we solve (1.1) on Ω =
[0, 1]2 with a constant permeability k ≡ 1 and a parameter-dependent mobility given
by λ(µ) =

∑Qλ
q=1 Θq

λ(µ)χΩq , where χΩq : Ω → {0, 1} are characteristic functions
for the Qλ ∈ N≥1 blocks Ωq ⊂ Ω with Qq ∩ Qs = ∅ for q 6= s. These blocks are
given by an equidistant triangulation of Ω into Qλ = 4 · 4 = 16 square elements.
The coefficients Θq

λ(µ) for 1 ≤ q ≤ Qλ are given by Θq
λ(µ) = µq for µq ∈ [0.1, 10].

Choosing f(µ) ≡ 1, ΓD = [0, 1] × {0} ∪ [0, 1] × {1}, ΓN = ∂Ω \ ΓD, gD(µ) ≡ 0 and
gN (µ) ≡ 0, the description of the problem setting is complete. We discretized this
problem using a rectangular grid with 30 ·30 = 900 fine grid elements and applied our
method using rectangular coarse triangulations with 1, 2 ·2, 4 ·4, 8 ·8, 15 ·15 and 30 ·30
coarse grid elements (subdomains). We ran the Greedy algorithm with a tolerance of
∆error = 0.05 for the estimated absolute error over the training set which consisted of
100 randomized parameters in the above-mentioned parameter domain. The training
set consisted of the same random parameters for all basis generation procedures. A
typical fine DG solution is plotted in Figure 5.1.
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Fig. 5.3. Maximum estimated absolute er-
ror over training set against number of snapshots
needed during Greedy algorithm for different sizes
of the coarse triangulation.
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Fig. 5.4. Time needed to update the er-
ror estimator during the Greedy algorithm: Mean
over all steps in seconds against number of sub-
domains for different coarse triangulations.

Figure 5.2 shows the number of total snapshots needed during the Greedy algo-
rithm to fulfill the error tolerance for different sizes of the coarse triangulation. We
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see that we are able to scale the offline cost in terms of needed snapshots by choosing
different coarse triangulations. The number of snapshots ranges from 56 for one coarse
grid element (which corresponds to a standard RB method) to only three snapshots
for 900 coarse grid elements. The latter is the expected behavior since three linearly
independent functions on each element are sufficient to represent a linear function
in two spatial dimensions. This scaling quality of our approach can also be seen in
Figure 5.3 where we demonstrate the evolution of the maximum estimated absolute
error over the training set during the offline procedure. We see how with an increasing
number of coarse elements the error decent gets steeper.
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Fig. 5.5. Maximum and mean relative true
error in the energy norm over the test set for
different coarse triangulations.
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Fig. 5.6. Mean, maximal and minimal num-
ber of local basis functions on the different coarse
grids before and after the PCA.

Clearly these qualities come with additional costs: With increasing size of the
coarse grid, the update of the error estimator becomes more and more costly as we
have to solve the high-dimensional equation once for every new basis function on every
coarse element. This increase in the offline cost can be seen in Figure 5.4, where we
compare the mean estimator update time for the different coarse triangulations. As
the computations of the Riesz-representatives are independent of each other, this step
can be easily parallelized. Thus it should be possible to compensate for the additional
costs by increasing the number of used CPUs with increasing coarse grid size. For
the experiments at hand we used a shared memory parallelization which needs to be
further improved by more sophisticated parallelization techniques as our approach is
obviously not able to fully compensate for the additional costs.

Similar to the update time for the error estimator, the total training time (time
for reduced simulations and estimator evaluations for all training parameters during
the offline phase) increases with increasing coarse grid sizes as the reduced basis Φ
grows a lot faster (than the basis of the standard RB method) during the Greedy
algorithm. Nevertheless, since we aim at applications with extremely costly detailed
simulations, this increase is usually negligible.

Furthermore, our localized method has another nice quality: The online error over
a given fixed test set decreases with increasing numbers of coarse elements. This is due
to the greater flexibility in the reduced scheme with our method. This phenomenon
can be seen in Figure 5.5 where the maximum relative true error in the energy norm
over the test set drops from 0.03 for 1 subdomain to 0.002 for 64 subdomains and
finally to 7 · 10−12 for 900 subdomains.

Finally, in Figure 5.6 we see the effect of the PCA. As described in Definition 5.1
we applied the PCA on each coarse element, using a tolerance of ∆PCA = 1 ·10−7. We
see that, up to a certain point, refinements of the coarse grid lead to bigger differences
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between maximum and minimum basis sizes. This behavior is expected as finer coarse
triangulations lead to a greater resemblance of the snapshots on each coarse element
(in particular in regions, where the snapshots do not differ too much, for example close
to the Dirichlet boundaries). Beginning with a coarse grid size of about 225, this effect
starts to vanish as the bases on the coarse elements get more and more compact and
therefore the possibility for reduction with the PCA vanishes. Also remarkable is
the fact that the PCA reduces the standard Greedy basis (which corresponds to 1
subdomain in Figure 5.6) only by one function. On one coarse element the Greedy
algorithm seems to work as good as the PCA: The basis is already very compact.

Fig. 5.7. Permeability field (top) and so-
lution (bottom) of the SPE10 problem for µ =
(0.01, 0.01, 0.95, 0.01, 0.01, 0.01)′. Left: Whole field, z-axis
scaled by 4. Right: Cuts along the x-y-plane at different
values of z, demonstrating the channel structures in the
permeability and matching solution with isolines (bottom).

Fig. 5.8. Threshold plot (values
between 0 and 0.9) of mobility for µ =
(0.01, 0.95, 0.01, 0.01, 0.01, 0.01)′ and
µ = (0.01, 0.01, 0.01, 0.01, 0.01, 0.95)′

(front and back). Z-axis scaled by 4.

5.2. The SPE10 Example. The second example uses real-world data taken
from the SPE10 benchmark problem [10]. The goal of this benchmark problem was
to compare different upscaling techniques for two-phase flow problems as motivated in
section 1. In this example we use the permeability field given in the SPE10 benchmark
and a mobility function that models the flooding of the domain by one of the phases
to solve (1.1) on Ω = [0, 365.76]× [0, 670.56]× [0, 51.816]. The fine triangulation of Ω
consists of 60 · 220 · 42 = 554400 cubes. The permeability field is displayed in Figure
5.7 (top).

For a given center x0 ∈ R3, a given transition width ε ∈ R>0 and Qλ ∈ N≥1 radii
αq ∈ R>0 for 1 ≤ q ≤ Qλ the mobility is given by λ(x,µ) =

∑Qλ
q=1 Θq

λ(µ)λq(x) with

components λq(x) = 1−χBαq+ε(x0)(x) · (1−χBαq−ε(x0)(x)) · sin2
(
π
|x−x0|+ε−αq

2ε

)
and

coefficients Θq
λ(µ) = µq for 1 ≤ q ≤ Qλ. We assume µq ∈ (0, 1] and

∑Qλ
q=1 µq ≤ 1. We

used x0 = (0, 0, 365.76)′, ε = 83.82, Qλ = 6 and αq ≈ 128(q − 1) in our example. In
Figure 5.8 we display the mobility function for two choices of µ. Finally, we set f ≡ 0,
gD = 0 on ΓD = {(x, y, z) ∈ ∂Ω|y = 670.56}, gN = 1 on ΓN,1 = {(x, y, z) ∈ ∂Ω|y = 0}
and gN = 0 on ΓN,2 = ∂Ω \ ΓD ∪ ΓN,1 to complete the problem definition. A typical
fine DG solution of the SPE10 example is plotted in Figure 5.7 (bottom).

We compute our LRBMS approximation on different coarse triangulations con-
sisting of 1, 2 · 2 · 2 = 8, 2 · 4 · 2 = 16 and 4 · 4 · 2 = 32 equally sized cubes. Figure 5.9
shows the evolution of the maximum estimated absolute error over the training set
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during the Greedy algorithm, the tolerance of which was set to ∆error = 0.1. Again
the number of snapshots needed to fulfill the error tolerance decreases with increasing
numbers of coarse elements. In this example, the decrease is not as big as in the ther-
mal block example which is most certainly due to the larger spatial dimensions of the
fine grid and smaller amount of coarse elements. Similar to the previous example, the
estimator update times increase with the number of coarse grid elements: The mean
time for one update rises from approximately 0.36 hours for 1 coarse grid element to
0.59 hours, 1 hour and 1.69 hours for 8, 16 and 32 coarse grid elements respectively.
Again, this increase can be compensated by an efficient parallelization. Apart from
the error estimator, our new scheme pays out for this test case: For 16 and 32 coarse
elements we need 4 snapshots less than a standard RB method needs, which saves
about 37 minutes of computation time during the offline phase. This effect can be
seen nicely in Figure 5.10: With increasing numbers of coarse grid elements, the offline
time (excluding the time needed to update the error estimator) drops from 5.4 hours
to 3.46 hours while the online time rises from 0.3 milliseconds to 33 milliseconds.
Note that here the offline time comprises times for snapshot computations as well as
update times of the reduced operator and the training time, which is the time needed
to compute the reduced simulations for all training parameters and to evaluate the
error estimator for those reduced simulations.
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In this case, the reduction of the offline time is not only due to the smaller amount
of snapshots that need to be computed but also due to the faster projection of the
high-dimensional quantities into the respective reduced spaces.

In Figure 5.11 we see an effect that we know from the previous example already:
The maximum relative true error over a given test set decreases with increasing num-
bers of coarse elements. Here, the mean error stays at the same level. Although for
this example the decrease in the error is not as decisive, it is worth noting that the
approximation qualities of our scheme are better than those of a standard RB scheme.

Finally, similar to the previous example, we compare the effect of the PCA for
the different coarse triangulations, this time using ∆PCA = 1 ·10−4. In Figure 5.12 we
observe the same behavior as for the thermal block example: With a rising number
of subdomains, the difference between maximum and minimum numbers of basis
functions on the different subdomains increases. We further see that although the
Greedy algorithm needed 19 snapshots for both 16 and 32 subdomains to fulfill the
error tolerance, the basis sizes after the PCA decreases.

6. Conclusions. In this paper we introduced the Localized Reduced Basis Mul-
tiscale method and demonstrated its applicability to heterogeneous elliptic multiscale
problems. Depending on the choice of the coarse triangulation, this method interpo-
lates between a standard DG method on a given fine triangulation and a classical RB
approximation. Numerical experiments demonstrate that with this approach we are
able to balance between offline and online cost depending on the multi-query scenario,
always reaching a better online performance than a standard RB approach. While
the proposed error estimator shows very pleasant performance for small coarse grid
sizes, a more localized estimator is desirable for coarse grids with more subdomains.
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