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APPLICATION OF A DEGENERATE DIFFUSION METHOD IN 3D
MEDICAL IMAGE PROCESSING

RADEK MÁCA∗ AND MICHAL BENEŠ†

Abstract. In this contribution, we present the application of the level set formulation of the
geodesic active contours model and its 3D semi-implicit complementary volume discretization to
the segmentation of 2D+t cardiac MRI (CMR) data. The appropriate adujstment of algorithm
parameters is explained. In particular, the algorithm is applied to the segmentation of the left and
right heart ventricle from the time series of 2D+t cine CMR data.
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1. Heart ventricle segmentation. In this paper, we focus on the segmenta-
tion of the heart ventricles from cardiac magnetic resonance imaging (CMR) data.
The CMR is a highly specialized imaging technique in the heart examination. In
comparison with the magnetic resonance imaging (MRI) of other organs, the CMR
has to take into account the motion of the heart, breathing motion and the blood
flow in the heart cavities. The images are usually acquired over several cardiac cy-
cles triggered by the patient’s ECG (Electrocardiography). There are several cardiac
MRI sequences used in the clinical practice. The image data we focus on are obtained
by the Cine MRI referring to an examination of the heart kinematics. The heart is
covered by 2D planes with the spatial resolution of about 2× 2× 10mm. Therefore,
the ventricles can be entirely covered by 8–12 slices. The planning of acquisition in
short axis is presented in Fig. 1.1. The temporal resolution ranges between 20ms and
60ms, i.e. the cardiac cycle is usually covered by 15–50 time frames (see Fig. 1.2).
For a detailed information about the MRI and the heart ventricle segmentation from
the medical viewpoint see [3], [6].

In terms of the CMR data dimension, there are several possibilities of segmenta-
tion. The slices for each time frame can be either segmented as separate 2D images
(see [1], [2], [10], [12], [16], [18], [21]) or merged into a 3D image [7]. As mentioned
above, the resolution in the third dimension typically ranges between 8–12 which is
much lower than in the other two. It is more convenient to segment the time evolution
of each individual slice as a 3D (2D+t) image with the resolution in time between
15–50 (see [14]). Last, we could join all 2D slices in all time frames to produce a 4D
(3D+t) image ([11], [17]). One of the first results dealing with the segmentation of
3D+t echocardiography images can be found in [25].

One of the drawbacks of 2D approach is the time discontinuity of the segmentation
results which can be fixed using the 2D+t segmentation. Specifically, the 2D+t image
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3D MEDICAL IMAGE PROCESSING 417

(a) (b)

Fig. 1.1: Example of data acquisition planning in short axis (a). The whole ventricle
is covered by 12 slices denoted by S01–S12. In Figure (b), slices 01–05, 08 and 11–12
are depicted (from left to right).

Fig. 1.2: A cardiac cycle is covered (for this patient) by 26 time frames (T01–T26).
Even time frames (except for frame 26) for slice S03 are depicted.

is built of the time sequences of 2D images (see Fig. 1.2). This approach ensures the
time continuity in the segmented data.

The main contribution of this paper is the segmentation algorithm based on the
level set formulation of the geodesic active contours model and its 3D semi-implicit
complementary volume discretization. The algorithm is tested on and applied to the
segmentation of 2D+t CMR data.

2. Degenerate diffusion in image processing. In our case, the 3D or 2D+t
CMR data are segmented by means of the surface Γ(t) ⊂ Ω in R3 propagating in the
normal direction with velocity V . The velocity V at a surface point ~x ∈ Γ(t) is given
by its (mean) curvature κΓ and external force as follows

V = −κΓ + F . (2.1)

For the segmentation purposes, equation (2.1) can be modified by incorporating the
influence of the processed signal (or its gradient) into the curvature and the force
terms. The motion equation (2.1) can be treated by the level set method. In this
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418 R. MÁCA, M. BENEŠ

case, Γ(t) is represented as a level set

Γ(t) = {~x ∈ Ω |u(t, ~x) = 0} , (2.2)

where u : [0, T ]×Ω→ R. The variable t parameterizes the segmentation process and
does not have the meaning of real time.

The evolution equation implicitly describing the motion of Γ(t) given by (2.2)
with velocity V in the outward normal direction is derived as follows.

Using the sign convention we can express the normal vector, the normal velocity
and the mean curvature as

~n =
∇u
|∇u|

, V = − ∂tu

|∇u|
, κΓ = ∇ · ~n = ∇ · ∇u

|∇u|
. (2.3)

Substituting (2.3) to equation (2.1), we obtain the level set equation in the form

∂tu = |∇u| ∇ · ∇u
|∇u|

− |∇u|F , (2.4)

where we denote ∂tu := ∂u/∂t. This equation has been extensively studied and
applied (see [8], [20], [26]). This experience suggests a ε-regularization [8] useful both
for theory and numerical computation in the form:

∂tu = |∇u|ε∇ ·
∇u
|∇u|ε

− |∇u|εF , (2.5)

where

|∇u|ε =
√
ε2 + |∇u|2 , ε > 0 . (2.6)

The known features of the level set equation based mainly on the controlled motion
of isosurfaces of the solution naturally led to its use in the image processing (see [4],
[13], [16], [23], [24], [26]).

In particular, the detection of image object edges is a one of tasks in image
segmentation. Edges in the input image I0 : Ω → {0, 1, 2 . . . , Imax}, represented by
the matrix nx × ny × nz, where the third direction corresponds to the time of the
processed data

Ω = (0, nx/n)× (0, ny/n)× (0, nz/n) , n := max{nx, ny, nz} ,

can be recognized by the magnitude of its spatial gradient. We use the following
format of the CMR data size: nx × ny × nz × ns, where ns denotes number of slices.
The level set equation operating in Ω can be modified as follows [5]

∂tu = |∇u|ε∇ ·
(
g
(∣∣∇Gσ ∗ I0

∣∣) ∇u
|∇u|ε

)
− g

(∣∣∇Gσ ∗ I0
∣∣) |∇u|εF , (2.7)

where g : R+
0 → R+ is a non-increasing function for which g(0) = 1 and g(s)→ 0 for

s → +∞. This function was first used by P. Perona and J. Malik ([22] in 1987) to
modify the heat equation into a nonlinear diffusion equation which maintains edges
in an image. Consequently, the function g is called the Perona-Malik function. We
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put g(s) = 1/(1 + λs2) with λ ≥ 0. Gσ ∈ C∞(R3) is a smoothing kernel, e.g. the
Gaussian with zero mean and variance σ2

Gσ(~x) =
1

(2π)3/2
σ3
xσ

3
yσ

3
z

exp
(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
, (2.8)

which is used in pre-smoothing (denoising) of image gradients by the convolution

(∇Gσ ∗ I0)(~y) =
∫

R3
∇̄Gσ(~y − ~x)I0(~x) ~dx , (2.9)

where Ī0 is the extension of I0 to R3 by, e.g., mirroring, periodic prolongation or
extension by zero. Let us note that equation (2.7) can be rewritten into the advection-
diffusion form

∂tu = g0|∇u|ε∇ ·
(
∇u
|∇u|ε

)
︸ ︷︷ ︸

(D)

+∇g0 · ∇u︸ ︷︷ ︸
(A)

− g0|∇u|εF︸ ︷︷ ︸
(F )

. (2.10)

For convenience, the abbreviation g0 = g(
∣∣∇Gσ ∗ I0

∣∣) is used. (D) in (2.10) de-
notes the diffusion term, (A) the advection term and (F ) the external force term. The
term g0 is called the edge detector. The value of the edge detector is approximately
equal to zero close to image edges (high gradients of input image). Consequently, the
evolution of the segmentation function slows down in the neighbourhood of image
edges. On the contrary, in parts of the image with constant intensity the edge detec-
tor equals one. The advection term attracts the segmentation function to the image
edges.

2.1. Initial-boundary value problem. As a parabolic partial differential eq-
uation, (2.7) requires initial and boundary conditions. For this purpose, we define the
signed distance function (SDF).

Let Γin be the interior of Γ(t) and Γout be the exterior of Γ(t). Consequently
Γ = ∂Γin = ∂Γout, Γin∪Γ∪Γout = Ω. Then the signed distance function (dΓ) is given
by

dΓ(t, x) =

 dist(x,Γ(t)) x ∈ Γout ,
0 x ∈ Γ(t) ,
− dist(x,Γ(t)) x ∈ Γin ,

(2.11)

where dist(~x,Γ(t)) = min{|~x− ~y| | ~y ∈ Γ(t)} .
The initial surface Γ0 as the initial guess has to be placed inside the segmentation

object – the left/right heart ventricle (see Fig. 2.1). Expansion of the initial surface
requires velocity (2.1) to be positive. Positive value of V implies that the external
force satisfies the following inequality F > κΓ. The signed distance function (SDF)
can be used as the initial condition for (2.7).

Finally, using the zero Neumann boundary condition we define the following
initial-boundary value problem

∂tu(t, x) = |∇u|ε∇ ·
(
g0 ∇u
|∇u|ε

)
− g0|∇u|εF in (0, T )× Ω ,

∂u

∂n
(t, x) = 0 on (0, T )× ∂Ω ,

u(0, x) = dΓ0(x) in Ω .
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(a) (b)

Fig. 2.1: Initial segmentation surface for a segmentation of the left ventricle (a) and
the right ventricle (b).

In case of 2D+t data covering the whole cardiac cycle, we can modify the bound-
ary condition to be periodic in the time axis.

3. Numerical scheme. The initial-boundary value problem is numerically sol-
ved using the efficient and unconditionally stable semi-implicit time discretization and
the three-dimensional co-volume spatial discretization introduced in [7], [9].

For the time discretization of the nonlinear diffusion equation (2.7) a semi-implicit
scheme is used. We choose the uniform discrete time step τ and approximate the time
derivative in (2.7) by the backward difference. The linear terms of the equation are
approximated at the current time level while the nonlinear terms (i.e. |∇u|ε) are
treated at the previous time level. In this way we obtain the following semi-implicit
discretization

1
|∇uk−1|ε

uk − uk−1

τ
= ∇ ·

(
g0 ∇uk

|∇uk−1|ε

)
− g0F . (3.1)

For a spatial discretization of (2.7) a co-volume numerical scheme is applied. The
co-volume method is used to construct a fully-discrete system of equations. A 3D
digital image is recorded on a structure of voxels with the cubic shape. Each voxel
includes the values of I0 influencing the segmentation model. The spatial approxima-
tions of the segmentation function u is related to the voxel centers.

The gradient of the segmentation function has to be evaluated at the previous
time step (|∇uk−1|ε) in (3.1). To that goal the 3D tetrahedral grid is put into the
voxel structure and a piecewise linear representation of the segmentation function on
such a grid is applied. This approach provides the constant value of the gradient
in tetrahedra allowing the simple and fast construction of a fully-discrete system of
equations. The tetrahedral grid is build using following construction. Each cubic voxel
is divided into 6 pyramids with a vertex given by the voxel center and base surfaces
given by the voxel boundary faces (see Fig. 3.1a). Then the neighbouring pyramids of
the neighbouring voxels are joined together to form an octahedron (Fig. 3.1b). These
octahedra are split into 4 tetrahedra using diagonals of the voxel boundary face (see
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(a) (b) (c)

Fig. 3.1: Construction of the tetrahedral grid: (a) splitting of voxel into 6 pyramids,
(b) joining of neighbouring pyramids of neighbouring voxels, (c) splitting of joined
pyramides into 4 octahedra.

Fig. 3.1c). From this approach follows that the voxel center is a common vertex of
24 tetrahedra.

Here we mention the co-volume spatial discretization briefly. To see a detailed
formulation of this scheme please follow the references cited below. Roughly speaking,
the co-volume discretization is mainly based on the construction of two meshes. First,
the primary mesh built of 3D tetrahedra mentioned in previous paragraph and the
complementary mesh which corresponds to the voxel structure. As it is usual in the
finite volume method, we integrate (3.1) over each co-volume p. We obtain∫

p

1
|∇uk−1|ε

uk − uk−1

τ
dx =

∫
p

∇ ·
(
g0 ∇uk

|∇uk−1|ε

)
dx−

∫
p

g0F dx . (3.2)

The approximation of the left-hand side and the first term on the right-hand side of
(3.2) can be found in [7], [9]. Hence we provide the result of the approximation only
for the second term on the right-hand side of (3.2) in the form∫

p

g0F dx ≈ m(p)g0
pF , (3.3)

where g0
p denotes an approximation of g0 on the co-volume p and m(p) is the measure

of p in R3, e.g. for a regular cubic co-volume mesh we have m(p) = h3, where h
denotes an edge length of a cube. The evaluation of g0

p can be done in following way.
We solve numerically the linear heat equation for time t corresponding to the variance
σ2, i.e. t = σ2/2, with the initial condition given by I0. Then we may construct its
piecewise linear representation on the grid and get a constant value of g0 on every
tetrahedron. Let G0,i

p , i = 1, . . . , 24 denote the approximation of the gradient on
each tetrahedron corresponding to the center of co-volume p (see [15]). Then we use
following approximation of g0 on p

g0
p ≈ g

(
1
24

24∑
i=1

G0,i
p

)
. (3.4)

As mentioned above, this discretization leads to a linear system of equations,
which has to be solved at each time step. For this purpose the SOR (Successive
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422 R. MÁCA, M. BENEŠ

Over-Relaxation) iterative method is used. The solution of the linear system is im-
proved by a parallel method using message passing interface (MPI) standard. For the
parallelization of the algorithm the parallel version (Red-Black SOR method) of SOR
method is implemented (see [7], [15]). A similar scheme implemented on GPU using
the CUDA toolkit can be found in [19].

3.1. Parameter setting. In this section we explain how the computational
parameters for the segmentation of the left/right heart ventricle from CMR data by
means of (2.7) are set up.

The parameter ε provides the regularization of the denominator in (2.4). The
convergence rate of the SOR method depends on this parameter – a lower value of
ε slows down the convergence. The value ε = 10−3 is a suitable compromise. The
spatial step is given as h = 1/(max{nx, ny, nz} − 1), the time step τ equals 10−3.

The parameters λ and σx,y,z are included in the edge detector g0 defined in
Section 2. The parameter σ characterizes the variance of Gaussian smoothing kernel
which is responsible for the presmoothing of the input data. The sensitivity of the
edge detector depends on value of the parameter λ. Very low values of λ decrease
the efficiency of the edge detection. On the other hand, very high values of λ can
cause the detection of spurious edges (i.e. noise, blood flow artifacts, etc.). These two
parameters are dependent each of other. Higher values of σx,y,z require higher values
of λ and vice versa. In our algorithm, we set σx,y = 2h, σz = σxnz/nx (our CMR
data holds nx = ny, nz < nx) and λ = 15 .

Finally, we have to specify the external force parameter included in the equation
(2.1). Satisfying the condition F > κΓ, we use F = 50.

3.2. Stopping criterion. Here the problem of successful termination of the
segmentation process is discussed. There are several possibilities to stop the segmen-
tation process. The simplest criterion could be to stop the process after the prescribed
number of iterations. This could be a good criterion for known input data only (we
know the stopping time before we start the process). Better possibility is to use an
automated stopping criterion. Typically the computation is stopped as soon as the
following inequality holds (see [27]):

1
M

∑
i,j,l

∣∣∣uki,j,l − uk−1
i,j,l

∣∣∣ ≤ Cτh2 , (3.5)

where the sum is over all grid points,M = nxnynz and C is a constant. As we can see
from (3.5) this criterion is time and memory consuming because of storing uk−1. At
the same time (3.5) is too strict for our computation. It would be enough to consider
the changes in the segmentation surface only (the zero level set of u).

In our algorithm we use the following automated stopping criterion

N0−1∑
i=0

D(uk−i) ≤ K , (3.6)

where D(uk) denotes the difference in the number of voxels inside the segmentation
volume between two time steps k and k − 1, i.e. D(uk) =

∣∣S(uk)− S(uk−1)
∣∣, where

S(uk) denotes the number of voxels inside the segmentation volume, i.e. the number
of grid points for which uki,j ≤ 0. The criterion (3.6) claims that the process is stopped
after k time iterations if D(uk) + D(uk−1) + . . . + D(uk−N0+1) ≤ K holds, i.e. the
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(a) (b)

Fig. 4.1: Right ventricle segmentation: (a) segmentation surface after 20 time itera-
tions , (b) final shape of segmentation surface after 200 time iterations.

Fig. 4.2: Right ventricle segmentation: Result of the segmentation depicted for time
frame T24 and slices S01–S04. White line corresponds to the segmentation surface at
given time frame.

changing of segmentation volume (segmentation surface) slows down enough. In our
experience good results are achieved using N0 = 3 and K = 100.

4. Numerical results. Given the extent of this contribution, the data for a
single patient are chosen as an example of the segmentation results. The size of CMR
data for this patient equals 128 × 128 × 26 × 12. The images for selected slices and
time frames are depicted in Figures 1.1 and 1.2. As we mentioned in Section 2.1 the
initial condition has to be manually placed inside the left/heart ventricle. In Figure
2.1a we can see an initial cylinder placed into the left ventricle, whereas in Figure
2.1b the initial elliptic cylinder is placed into the right ventricle.

The result of the right ventricle segmentation for the slice S02 is depicted in Fig.
4.1. In Fig. 4.1a we can see the shape of a segmentation surface after 20 time iteration.
Stopping criterion (3.6) terminated the segmentation process after 200 time iteration;
Fig. 4.1b presents the result of segmentation process. As we can see in Fig. 1.1 the
right ventricle is well visible only for slices S01–S04. Therefore, we can perform the
segmentation for these slices and get the results depicted in Fig. 4.2.

In the same way the results of the left ventricle segmentation are shown. The
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(a) (b)

Fig. 4.3: Left ventricle segmentation: (a) result of segmentation for the patient (250
time iterations), (b) final shape of segmentation surface for the healthy volunteer after
300 time iterations (data size: 128× 128× 80× 1).

Fig. 4.4: Left ventricle segmentation: Result of the segmentation depicted for time
frame T01 and slices S01, S02, S04, S05, S07, S08, S10, S11. White line corresponds
to the segmentation surface at given time frame

final shape of the segmentation surface for the slice S02 after 250 time iteration is
contained in Fig. 4.3a. The investigated patient has low contractility of myocardium.
In order to see the difference between the shapes of final segmentation surfaces for
hearts with low and high contractility we apply our algorithm on a healthy volunteer.
The result is depicted in Fig. 4.3b which has a clearly different shape. From Fig. 1.1
it follows that we can perform the segmentation of the left ventricle for slices S01–S11
and obtain the results shown in Fig. 4.4.

Finally, we introduce the computing environment. Table 4.1 shows the computing
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CPUs 2 4 8 16
time (secs) 5542.7 2820.4 1411.8 710.9
speed-up 2 3.93 7.85 15.59
efficiency 1 0.98 0.98 0.97

Table 4.1: Computing times and speed-up on 2 to 16 CPUs

CPUs 1 2 4 8 16
Time (secs) 6095.9 5542.7 2820.4 1411.8 710.9
Speed-up 1 1.09 2.16 4.32 8.57
Efficiency 1 0.55 0.54 0.54 0.54

Table 4.2: Computing times and speed-up on 1 to 16 CPUs

times in second after 20 iterations are performed. As we can see that the efficiency
as well as the speed-up is high using larger number of processors. This result is
surprising and requires further discussion. Table 4.2 represents the comparison to the
computating using serial code (serial version of SOR method).

5. Conclusion. In the presented paper we apply the segmentation algorithm
based on the level set equation to the problem of CMR data segmentation. The algo-
rithm is based on the numerical scheme using the semi-implicit discretization in time
and the co-volume method in space. The algorithm was tested on and applied to the
real CMR data. The data were provided by the Institute for Clinical and Experimen-
tal Medicine in Prague1. We presented the segmentation results both for a patient
and a healthy volunteer with satisfactory results. Compared to the 2D approach
based on similar mathematical model introduced in [12] the 2D+t model provides
time continuity in segmented data and higher accuracy of the heart ventricle volume
estimation. Moreover, the results of the right heart ventricle segmentation using the
2D+t approach are more accurate than the results using the 2D segmentation model.
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