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PARALLEL ALGORITHMS FOR SEGMENTATION OF CELLULAR
STRUCTURES IN 2D+TIME AND 3D MORPHOGENESIS DATA∗
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Abstract. In this paper we present a robust method to segment 3D and 2D+time biological
data. Our method uses distance function and the Generalized Subjective Surfaces (GSUBSURF)
level-set segmentation algorithm. We focus on memory-efficient implementation of distance func-
tion computation, a novel way of finite volume method discretization of GSUBSURF PDE and the
optimized parallelization of our code via the MPI library, enabling us to take the advantage of
high-performance computing servers. Several experiments, including optimized parallelization test,
validation of parallel GSUBSURF implementation and visual check of method performance on real
data, are presented as well.
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1. Introduction and problem definition. In this paper we present algorithms
for solution of two problems: First of them is to segment tubular structures of cell
evolution from a 2D video of a fruit fly (Drosophila) in pupal state. Our second task
is, from a 3D image of cells of a zebrafish (Danio Rerio) in embryogenesis, to extract
the volume and shape of the whole embryo. Although these tasks are different in
nature, technically the solutions arising for both of them tend to be very similar.

The similarity of these problems is caused by treating the temporal dimension in
the 2D+t problem as a third, artificial, spatial dimension. Then we can use the same
algorithms in 3D domain to solve these problems.

The input to both our problems is the intensity function in defined the domain
Ω and the set of points denoting cell positions. We call them the cell identifiers. The
input intensity function over the domain is a 2D video of cellular evolution in the first
problem and a 3D image of cell membranes in the second problem. Same holds for
the dimensionality of cell identifier sets. The visualization of intensity functions is to
be seen in fig. 1.1.

The suggested algorithms take into account the intrinsic noise introduced by the
confocal laser microscope imaging technology and their goal is to be robust against
imaging imperfections. Therefore, we accept that some of the cell identifiers could
be missing, and some cells could have more than one cell identifier. We obtain cell
identifiers directly from our data using the level-set center detection (LSCD) algorithm
[10]. The aim of LSCD algorithm is to yield a set of points identifying the approximate
centers of mass of each cell. From the segmentation point of view, the cell identifiers
are to be used as seeds to create the initial segmentation profile.

The output to both problems is the segmentation of the domain into logical
subdomains, representing cell volumes. In the first case, it is the segmentation of 2D+t
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Fig. 1.1. Data example. Upper left - 100 frames of a 100x100 pixel video of drosophila evolution
stacked atop each other, upper right - 50th frame of drosophila evolution video. Lower left - slice
of 512x512x190 voxel 3D data of zebrafish embryo, view from top, lower right - slices of zebrafish
data, view from sides.

domain into spatio-temporal pair-of-pants-like structures representing the evolution of
cells in time. This segmentation is to be processed further, to obtain 2D+t trajectories
of cells by a backward tracking algorithm as in [2, 12], in order to obtain the cell
lineage. In the second case, the output is the segmentation of 3D domain representing
the shape of the embryo. We use this information further to calculate volume of the
embryo and some other characteristics, like the density of cells per unit volume or the
density of cell divisions [3, 13].

In comparison with the previous papers [2, 3, 13], we present here the parallel
strategy to solve these tasks. Our proposed parallel algorithmic approach consists of
these steps:

A. compute distance function (DF) from input set of points by an efficient parallel
algorithm,

B. construct in parallel the initial segmentation function (ISF) from DF,
C. use a parallel level-set algorithm, in our case the Generalized Subjective Surfaces

(GSUBSURF) to obtain the segmented domain.

The organization of this paper is following: in chapters 2 and 3, we discuss the
design and implementation of these algorithmic steps. In chapter 4, we describe
parallelization of the code, using MPI. And finally, in chapter 5, we discuss numerical
results in the study of the experimental order of convergence, and the experiments
performed on phantom and real data.
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2. Distance function. To compute the distance function from cell identifiers,
we solve the time relaxed Eikonal equation

dt + |∇d| = 1 , (2.1)

using the method from [4, 13], based on the so-called Rouy-Tourin scheme [14].
Let Ω be the solution domain and let p be a voxel in this domain: p ⊂ Ω. Let

the set of 6 neighbouring voxels to the voxel p, i.e. voxels sharing common face, be
Np = {e, n, t, w, s, b} according to ”east - north - top - west - south - bottom” points-
of-compass labeling. We denote a particular neighbour of p by q. Let the voxels of
our domain be uniform cubes. Let the length of its side be hD. For each p, let the
approximate value of the solution d at time step n, in the center of p, be dnp . Let us
define Mq

p , q ∈ Np, as [14]

Mq
p = (min(dnq − dnp , 0))2 .

The scheme for solving the eq. (2.1) in the three-dimensional space then reads as
follows:

dn+1
p = dnp + τD −
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p ,M
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p

)
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b
p

))1/2
(2.2)

where τD is the time step size. Scheme is stable for τD ≤ hD/2 [13].
To compute the distance function with optimal memory requirements, we calcu-

late new time steps in a chessboard-like manner (often called the ”Red-Black Scheme”
in numerical mathematics) where all red elements have only black neighbours and all
black elements have only red neighbours. In each time step we first update all red
elements and then all black elements. We can redefine Mq

p for red and black elements
as

Mq
R,p = (min(dnB,q − dnR,p, 0))2

Mq
B,p = (min(dn+1

R,q − d
n
B,p, 0))2 ,

and the scheme (2.2) has the form of a two-step procedure
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where indices B and R denote black or red elements. Using this approach we can use
only one array and overwrite it directly by new iterations as they come, thus reducing
memory requirements by half.

3. Generalized Subjective Surfaces. The partial differential equation for
GSUBSURF method is

ut − wa∇g · ∇u− wcg|∇u|∇ ·
(
∇u
|∇u|

)
= 0 , (3.1)
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and comes from the level set formulation of the geodesic active contour model [5, 11,
15, 6, 13].

In the model (3.1), g is an edge detector function, for which we use g(s) = 1
1+Ks2 ,

where K is the edge detection sensibility parameter and s = |∇I|, where I is the
input image intensity function. Parameters wa and wc are weights for the advection
and curvature terms of the model, respectively. The choice of a boundary condition
depends on the problem solved: In our first problem, where we reconstruct the 2D+t
structures, we assume the cell image continues even beyond the image domain, so
we use zero Neumann boundary condition. For our second problem, where the 3D
embryo is well separated from the boundary of the image domain, we choose zero
Dirichlet boundary condition. We create the initial segmentation function (ISF) from
the DF d (x) computed by the method from section 2, where d (x) represents distance
in R3 to a set of points representing cell identifiers. We can use an isosurface δ > 0
of DF and have a piecewise constant ISF:

u0 (x) =

{
1 if d (x) ≤ δ,
0 else,

or, we can compute ISF by considering

u0 (x) =
1

1 + d (x)
.

The reason to compute ISF from the DF, and thus placing the computational
burden on the DF itself, is to minimize amount of inter-process communication.
This makes it more suitable for parallel computing. In the former, non-parallel
approach[13], the communication had to take place for each voxel and for each cell
identifier. Now, when the DF is known, there is no inter-process communication and
the formulation of the ISF is a local problem.

In order to derive the discretization of (3.1), we use the semi-implicit finite volume
method (FVM) based on [9] for advective part, and on [8] for the curvature part.
Image voxel serves as a natural choice for FVM control volume.

Similarly to the previous section, let p be the voxel of our interest and Np =
{e, n, t, w, s, b} be the set of neighbours in the points-of-compass labeling. Let unp be
the value of the solution u in voxel p at the time step n.

The voxel is a box in R3 and we assume its uniform edge size h. The voxel faces
are denoted by σ and their measure is m(σ) = h2. Let ∂p denote the boundary of
this domain and let n∂p denote the outer normal to this boundary. Volume of the
voxel is denoted by m(p) = h3. Let σpq be the common boundary of p and q and let
the line connecting the center of voxel p with the center of the face σ be denoted by
dpσ. Its measure is h/2.

First, we approximate the time derivative by the backward difference: ut ≈
un+1−un

τ , where τ is the size of the time step. Then, let us use the semi-implicit
approach in time, and integrate (3.1) over the finite volume p:∫
p

un+1 − un

τ
dx−

∫
p

wa∇g · ∇un+1dx−
∫
p

wcg|∇un|∇ ·
(
∇un+1

|∇un|

)
dx = 0 . (3.2)

The approximation of the first term in eq. (3.2) is∫
p

un+1 − un

τ
dx ≈ m(p)

un+1
p − unp

τ
. (3.3)
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To disretize the second term in eq. (3.2), we first define velocity v = −wa∇g. Then,∫
p

−wa∇g · ∇un+1dx =

∫
p

v · ∇un+1dx =

∫
p

∇ · (vun+1)dx−
∫
p

un+1∇ · v dx ,

and, using Green’s theorem in both terms and the constant representation of a solution
in the finite volume p in the second term, we obtain∫
p

∇ · (vun+1)dx−
∫
p

un+1∇ · v dx ≈
∫
∂p

(vun+1) · n∂pdx− un+1
p

∫
∂p

v · n∂pdx . (3.4)

We define an approximate gradient of the edge detector function in finite volume p
using central differences: ∇gp = (Gpe, Gpn, Gpt) = (−Gpw,−Gps,−Gpb), where

−Gpw = Gpe ≈
ge − gw

2h
,

−Gps = Gpn ≈
gn − gs

2h
,

−Gpb = Gpt ≈
gt − gb

2h
,

and gq is the value of the edge detector function in q ∈ Np. Then, we define the
integrated flux through a voxel side by

vpq =

∫
σpq

v · n∂p dS =

∫
σpq

−wa∇g · n∂p dS ≈ −waGpqm(σpq) .

Using the integral fluxes, we can define inflows and outflows through voxel sides as

vinpq = min(vpq, 0) , voutpq = max(vpq, 0) .

We then approximate (3.4) by using the upwind principle as in [9] and obtain the
result: ∫

∂p

(vun+1) · n∂pdx− un+1
p

∫
∂p

v · n∂pdx ≈

∑
q∈Np

vinpqu
n+1
q +

∑
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voutpq u
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p −

∑
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p −

∑
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voutpq u
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p =

∑
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vinpq
(
un+1
q − un+1

p

)
.

To discretize the third term in eq. (3.2), we use the approach built in [8] for approx-
imation of the mean curvature term and we get

−
∫
p

wcgp|∇unp |ε∇ ·

(
∇un+1

p

|∇unp |ε

)
dx ≈

≈− wcgp|∇unp |ε
∑
q∈Np
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p

h

2

|∇unp |ε + |∇unq |ε
m(σpq) ,
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where we use the Evans-Spruck regularization [7]. Let fnp be the ε-regularized ap-
proximation of gradient modulus, fnp ≈ |∇unp |ε, given by

|∇up|nε ≈ fnp =

√√√√ε2 +
1

m(p)

∑
q∈Np

m(σpq)

dpσ

(
unσ − unp

)2
, (3.5)

which gives the exact value if u is a linear function and ε = 0 [8]. In (3.5), unσ is
the approximate value of u in point xσ, which is the intersection of σpq and a line
connecting centers of voxels p and q, at the time step n. It is computed as follows [8]:

un+1
σ =

un+1
p fnq + un+1

q fnp
fnp + fnq

. (3.6)

The full linear system reads as follows:

m(p)
un+1
p − unp

τ
+
∑
q∈Np

vinpq
(
un+1
q − un+1

p

)
−

− wcgpfnp
∑
q∈Np

un+1
q − un+1

p

h

2m(σ)

fnp + fnq
= 0 (3.7)

From the initial condition, one can obtain u0p and u0σ. We set n = 0 and fnp is
computed by (3.5). Then, the system (3.7) is solved, and new un+1

σ are computed by
(3.6).

4. Parallelization. To speed up the computation and reduce the process mem-
ory consumption we parallelize the algorithms using MPI (Message-passing interface)
[1]. We divide the whole volume along the volume edge into N subvolumes, the same
number as total count of parallel processes. Of these N subvolumes, N-1 has always
the same size and the last subvolume may be the same size or smaller, depending
on how the volume can be divided. Each process then performs the calculation only
on appropriate subvolume. The only inter-process communication is needed at the
following steps of parallel implementation: at the beginning, the cell identifiers are
read by first process and then broadcasted to all other processes. The neighbouring
slices with updated data are exchanged between processes during the computation of
DF and also during the solution of the linear system after each half-iteration of the
red-black SOR algorithm. The appropriate part of the input image is read from input
file in parallel by each process and communication is not needed.

We tested the parallel computation speedup on a high-performance computing
(HPC) server with 4x octo-core AMD Opteron 6134 with 256GB of RAM using real
data volume with dimensions 512x512x120 voxels. We achieved nearly linear speedup
while running up to eight processes and slightly lower speedup after that (tab. 4.1).
During the initial testing we observed a curious phenomenon where there was a mas-
sive slowdown when the program was run on certain number of processors. Inter-
estingly, this problem was dependent not on the number of processors, but on the
number of the subvolume slices. We verified this fact by running the calculation on
fourteen processes with 37, 38 or 39 slices on each subvolume. Then the calculation
took 3223, 2815 and 2664 seconds respectively, see also peaks in the upper curve in
fig. 4.1. Logically, the calculation should be faster on smaller subvolumes, but on
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Table 4.1
Parallel calculation speedup.

No. of processes 1 2 4 8 16 32
Calculation time 26421 13420 6667 3417 2078 1474
Speedup - 1.97 2.01 1.95 1.64 1.40

the contrary, it was slower. Depending on the number of slices, arrays of variables
in algorithms stored in memory are not optimally aligned for the processor caches,
so with certain sizes there is heavy cache trashing and calculation is slowed down
significantly. To overcome this problem, we restructure the program memory orga-
nization so when the variables are used together, we are not using separate arrays
for each of them, but we store them in a single array of structures. Then they are
stored near each other in memory. For example, when we are calculating uσ for north,
south, west, east, bottom and top voxel faces, we store them all in single structure
containing 6 double variables for each voxel and we are using single array of these
structures for whole image. Likewise we are storing other variables in our programs.
With this memory organization the hardware data prefetching on processors works
in an optimal way. This change not only eliminates the aforementioned problem,
but also speeds up the serial code by 40% as seen on fig. 4.1 (starting points of the
curves). The slight slowdowns in optimized code after multiples of eight processes are
caused by the fact, that each four cores of the server are sharing memory access. If
we run eight processes, each process has dedicated memory access, but when we run
nine processes, two processes are sharing memory access, so there is slight slowdown.
In the tab. 4.1 we can see that we achieved nearly linear speedup while running up
to eight processes. After that, the main bottleneck in the calculation is the speed of
memory access, so the speedup is lower. We verified this by running the calculation
with sixteen processes on two servers, eight processes on each. With this configuration
the memory access by processes is used optimally. The calculation time, despite the
need of inter-process communication through local network, was faster than running
sixteen processes on a single server, where each two processes share single memory
access (1814 seconds versus 2078 seconds).

To minimize the amount of data needed for communication, we first rotate the
volume so it is always divided along the longest edge - then the amount of data
sent during the communication is minimal. This does not bring a notable speedup
when running the calculation on single server, because communication through shared
memory inside the server is sufficiently fast even for larger amount of data. On the
other hand, in the worst-case scenario, when each process runs on a different server
connected together by 1Gbit local area network, the speedup was considerable. With
our testing volume, when divided along the edge with the size of 120 voxels, we are
sending slice with the size of 512x512 type double variables (2MB of data). The
calculation on eight processors took 5520 seconds. When we divided it along the 512
voxels edge, the amount of data for communication was reduced to 0.5MB and whole
calculation took 3750 seconds, which is faster by 33%.

5. Numerical experiments.

5.1. Phantom experiments. To perform the basic correctness test of our im-
plementations, we created simple phantom data. For the first problem, we created an
artificial image of the evolution of three cells, one of which undergoes a cell division
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Fig. 4.1. Comparison of duration of the calculation before and after the optimization depending
on the number of used processors. X-axis: number of processors, y-axis: time in seconds, note that
y-axis has logarithmic scale. The upper curve represents calculation time before optimizations and
the lower curve represents time after the optimization.

in the middle of the video. Then, using randomly generated cell identifiers, we con-
structed ISF. Visually we can see that the segmentation algorithm correctly retrieves
spatiotemporal shapes of cellular evolution, cf. fig. 5.1.

For the second problem, we created an artificial hemisphere as an approxima-
tion of the embryo shape. From randomly placed cell identifiers we computed DF,
constructed the ISF and we were able to reconstruct the embryo phantom using the
GSUBSURF algorithm, cf. fig. 5.2.

Fig. 5.1. 2D+time phantom image segmentation. From left to right: first - phantom image
of three cells, where the central one undergoes a cell division during its evolution, second - hy-
perbolic initial segmentation function, visualized as a slice, third - segmentation result after 1000
GSUBSURF time steps, visualized as a slice, fourth - the same segmentation result, visualized as
an isosurface.

5.2. Study of the experimental order of convergence. We tested our pa-
rallel implementation of (3.5)-(3.7) for the curvature part of GSUBSURF, so we let
wa = 0 and wc = 1 and g = 1 and we considered the exact solution of the problem in
the form [6]

u (x, y, z, t) =
(
x2 + y2 + z2 − 1

)
/4 + t . (5.1)

We solve the problem in the spatial domain Ω = [−1.25, 1.25] × [−1.25, 1.25] ×
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Fig. 5.2. 3D phantom image segmentation. Left - phantom image of an embryo of hemi-
spherical shape, center - initial segmentation function, piecewise-constant thresholding of DF from
randomly generated cell identifiers, right - segmentation result

Table 5.1
This table shows EOC analysis of full domain solution. NTS-number of time steps, err - error

in L2(Ω)-norm at the time T = 0.16.

n h NTS τ err EOC

10 0.25 4 0.04 0.00582
20 0.125 16 0.01 0.001612 1.85
40 0.06125 64 0.0025 0.000445 1.86
80 0.030625 256 0.000625 0.000118 1.92
160 0.015625 1024 0.00015626 0.00003 1.98

[−1.25, 1.25] over the time interval T ∈ [0, 0.16]. We divide the domain subsequently
into n3 finite volumes, where n = 10, 20, 40, 80, 160 with edge size h = 2.5/n. The
length of time step τ is proportional to h2.

We measured the experimental order of convergence (EOC) with respect to grid
refinement. The results of parallel computations are shown in tab. 5.1. The obtained
results are independent on the number of processors used for calculations.

5.3. Real data experiment. Finally, we performed a segmentation of real data.
In fig. 5.3 we show isosurfaces of the ISF (left) and isosurfaces of the corresponding
segmentation result, showing segmented spatio-temporal tubular structures. These
represent cellular evolution of approximately 30 cells from the mono-layered epithe-
lium of a Drosophila pupa in morphogenesis.

In fig. 5.4 we present segmentation of the overall shape of the zebrafish em-
bryo during the first stages of the development. The segmentation is visualized as
one horizontal and two vertical slices, where we plot original data together with a
segmentation isosurface.
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