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STABILIZED SEMI-IMPLICIT FINITE VOLUME SCHEME FOR
PARABOLIC TENSOR DIFFUSION EQUATIONS

ANGELA HANDLOVIČOVÁ, PAVOL KÚTIK, KAROL MIKULA ∗

Abstract. We introduce a new stabilized finite volume method for solving tensor diffusion
equations. The new scheme is based on the classical diamond-cell finite volume method and on
the idea of inflow-implicit/outflow-explicit (or forward-backward diffusion) splitting accompanied
by a suitable stabilization. Comparisons with known exact solution and numerical experiments
investigating stability of the proposed method in case of highly anisotropic diffusion tensor are
discussed.
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1. Introduction. The goal of this article is to present new numerical method
for solving tensor diffusion equation of the form

∂u

∂t
= ∇ · (D∇u), (1.1)

where u : R2×[0, T ]→ R is an unknown function and D is a positive–definite diffusion
matrix. The equation (1.1) is accompanied by initial and boundary conditions, either
of Dirichlet or Neumann type. For the sake of simplicity we restrict our presentation
only to a constant coefficient two-dimensional case, i.e.

D =

(
d11 d12
d21 d22

)
, (1.2)

but the method can be applied to a more general cases where matrix D may depend
on spatial position x = (x, y) and/or on the solution u. The tensor diffusion equa-
tions arise in many applications like the heat transfer in anisotropic media, porous
media flow in anisotropic layers, coherence enhancing image filtering or in stochastic
volatility based derivative pricing in financial mathematics.

The numerical scheme presented in this article is based on the so-called diamond-
cell finite volume scheme, see e.g. [2, 4]. The diamond-cell scheme for solving tensor
diffusion elliptic problems was studied in [2] and convergence and error estimates
for nonlinear parabolic tensor diffusion equations were given in [4, 5]. In our new
approach, the classical diamond-cell scheme is rewritten into a form where we can
identify forward and backward diffusion coefficients governing diffusion fluxes be-
tween finite volume p and its neighbours q. Using the idea of Mikula and Ohlberger
[7] we split the scheme into a forward diffusion part which is treated implicitly and to
a backward diffusion part which is treated explicitly. By the analogy to finite volume
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schemes for advection equations [8, 9] we shall call this forward-backward/implicit-
explicit diffusion splitting as the inflow-implicit/outflow-explicit (IIOE) scheme. In-
terestingly, such splitting has the same order of accuracy as the original diamond-cell
scheme, which will be shown computationally on a representative example of exact
solution to the problem. The inflow-implicit/outflow-explicit (or forward-backward
diffusion) splitting brings always diagonally dominant M-matrix of the arising linear
system which yields good solvability and stability properties of the implicit part of
the scheme. On the other hand, the implicit part does not always ”dominate” the
explicit part of the scheme and some spurious oscillations related to backward diffu-
sion (outflow) coefficients may appear. In order to build L∞-stable scheme fulfilling
discrete minimum-maximum principle we use stabilization presented in [10] where
high-resolution schemes were built for solving advection equations. The stabiliza-
tion is based on the so-called flux-corrected transport methodology [1, 11] which is
in our case applied only to the explicit part of the scheme (see also [6]) and only
in finite-volumes where the local discrete minimum-maximum principle is violated
after application of the basic IIOE scheme (see also [10]). Since such stabilization is
performed in a two step procedure we call it S2IIOE scheme. Our numerical experi-
ments show that S2IIOE scheme seems to be suitable for solving anisotropic diffusion
problems since it supresses the spurious oscillations and do not touch significantly the
non-oscilatory part of solution of the original IIOE scheme.

The paper is organized as follows. In section 2 we repeat the formulation of
the standard diamond-cell finite volume scheme on a simple squared grid in two
dimensions. Then we present its IIOE splitting and our stabilization method. In
Section 3 we discuss experimental order of convergence of the presented numerical
schemes and present examples where the effect of stabilization is studied in order to
fulfill discrete minimum-maximum principle. Finally some concluding remarks are
made.

2. Numerical schemes. We consider equation (1.1) in a bounded rectangular
domain Ω ⊂ R2 and time interval I = [0, T ]. We consider an admissible mesh Th,
in the sense of [3], consisting for simplicity only of squared finite volumes. Let p be
a finite volume and σpq be an edge between p and q, q ∈ N(p), where N(p) is set
of all neighbouring cells, i.e. finite volumes which have a common one-dimensional
face with p. The set N ′(p) denotes all finite volumes which have either a common
edge or a common vertex with the cell p. Obviously N(p) ⊂ N ′(p) and in two
dimensions card(N(p)) = 4 whereas card(N ′(p)) = 8. In particular, the set N ′(p) =
{e, ne, n, nw,w, sw, s, se} denotes east, north-east, north, north-west, west, south-
west, south and south-east neighbouring cell of the finite volume p. Since all finite
volumes are equal squares, length of any edge σpq is denoted by h. Let the center of
each cell (finite volume) p be denoted by xp and the intersection point of σpq and line
connecting xp and xq, q ∈ N(p) be denoted by xpq. Such definition complies with
the definition of an admissible mesh where each line joining xp and xq, q ∈ N(p),
must be orthogonal to σpq. We denote this orthonormal direction, i.e. the unit outer
normal vector to σpq with respect to p, by npq. Clearly, the distance between two
neighbouring cell centers is |xp − xq| = h. Furthermore the measure of every finite
volume equals to h2. We use uniform discrete time step τ in order to discretize the
time interval [0, T ]. The numerical solution inside a finite volume p at time step n is
denoted by unp .
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2.1. Diamond-cell finite volume scheme. In order to motivate our new
scheme let us first recall the well-known diamond-cell method used for solving tensor
diffusion equations. Integrating (1.1) over the finite volume p and applying Green’s
theorem to the right-hand side yields∫

p

∂u

∂t
dx =

∑
q∈N(p)

∫
σpq

(
d11

∂u
∂x + d12

∂u
∂y

d21
∂u
∂x + d22

∂u
∂y

)
· npq ds. (2.1)

As the mesh consists of squares with edges parallel to the coordinate system we can
easily rewrite (2.1) into the following form∫

p

∂u

∂t
dx =

∫
σpe

(
d11

∂u

∂x
+ d12

∂u

∂y

)
dγ +

∫
σpn

(
d21

∂u

∂x
+ d22

∂u

∂y

)
dγ −∫

σpw

(
d11

∂u

∂x
+ d12

∂u

∂y

)
dγ −

∫
σps

(
d21

∂u

∂x
+ d22

∂u

∂y

)
dγ (2.2)

where σpe, σpn, σpw, σps denote the east, north, west and south edge of an arbitrary
interior finite volume p.

In the discretized version we replace the time derivative in (2.2) by the backward
difference in a representative point xp and use a central-difference-like approximations
for the space derivatives, e.g. for the edge σpe it looks

∂u

∂x
(xpe) ≈

ue − up
h

,
∂u

∂y
(xpe) ≈

1

2

(
un − us

2h
+
une − use

2h

)
. (2.3)

Let us note that these approximations can be generalized to non-rectangular meshes
in two or three dimensions by using gradient approximation on a diamond-like shape
around the edge σpe from which the method took its name. Following such approxi-
mations we get

unp − un−1p

τ
h2 = d11 (une − unp ) +

d12
4

(unne − unse + unn − uns ) +

d21
4

(unne − unnw + une − unw) + d22(unn − unp ) +

d11 (unw − unp ) +
d12
4

(unsw − unnw + uns − unn) +

d21
4

(unsw − unse + unw − une ) + d22(uns − unp ).

which can be further simplified to obtain the standard diamond-cell scheme

h2

τ
unp + d11(unp − une ) +

d12
4

(unse − unne) +
d21
4

(unnw − unne) + d22(unp − unn) + (2.4)

d11(unp − unw) +
d12
4

(unnw − unsw) +
d21
4

(unse − unsw) + d22(unp − uns ) =
h2

τ
un−1p

2.2. Inflow-implicit/outflow-explicit (IIOE) scheme. Let us add and sub-
tract the term unp to each expression in parentheses on the left-hand side and collect
all coefficients which multiply the same expression (unp − unq ), where q ∈ N ′(p). Then
the diamond-cell scheme (2.4) can be written as follows

unp +
τ

h2

∑
q∈N ′(p)

apq(u
n
p − unq ) = un−1p , (2.5)
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where

ape = apw = d11, apn = aps = d22, (2.6)

apnw = apse = −d12 + d21
4

, apne = apsw =
d12 + d21

4
. (2.7)

Assuming non-diagonal anisotropic positive definite diffusion matrix, we know that
d11 and d22 are always positive but we also see that the pairs of coefficients in (2.7)
have opposite signs but the same magnitude. These facts may violate the M-matrix
property and diagonal-dominance of the system matrix and cause that its inverse is not
positive matrix (i.e. matrix with only non-negative entries) with raw-sum equals to 1.
Non-positiveness of the inverse matrix may cause or magnify spurious oscillations and
thus violate the minimum-maximum principle in numerical solution which is always
fulfilled in the case of continuous solution. We are able to treat these undesired
situations by applying the so-called inflow-implicit/outflow-explicit splitting of the
original diamond-cell scheme. To that goal, the basic scheme (2.5) is adjusted so that
all diffusion fluxes with positive coefficients apq ≥ 0 are treated implicitly and all
diffusion fluxes with negative coefficients apq < 0 are taken explicitly. In such a way
we obtain the basic IIOE scheme for tensor diffusion

unp +
τ

h2

∑
q∈N ′(p)

ainpq(u
n
p − unq ) = un−1p − τ

h2

∑
q∈N ′(p)

aoutpq (un−1p − un−1q ), (2.8)

where

ainpe = ainpw = d11, a
in
pn = ainps = d22

ainpnw = ainpse = max

(
−d12 + d21

4
, 0

)
, ainpne = ainpsw = max

(
d12 + d21

4
, 0

)
and

aoutpe = aoutpw = 0, aoutpn = aoutps = 0

aoutpnw = aoutpse = min

(
−d12 + d21

4
, 0

)
, aoutpne = aoutpsw = min

(
d12 + d21

4
, 0

)
.

In this way we obtain a system matrix which is diagonally dominant M-matrix for
which the system is always solvable and which inverse is always positive. The only
part of this scheme which may cause a failure of the discrete minimum-maximum
principle is the outflow-explicit (backward diffusion) right hand side since it may
happen that in some situations the inflow-implicit (forward diffusion) part does not
have an enough strength to keep numerical solution in the initially given range of
solution values.

2.3. Stabilized IIOE scheme for tensor diffusion. The stabilization of the
IIOE scheme (2.8) is based on strategy presented in [10]. It consists in assigning
weights to the outflow (backward diffusion) coefficients in order to keep the righ-hand
side in a desired range and correspondingly adjusting the inflow (forward diffusion)
coefficients. We can write the stabilized scheme in the following general form

unp +
τ

h2

∑
q∈N ′(p)

Ainpq(u
n
p − unq ) = un−1p − τ

h2

∑
q∈N ′(p)

θoutpq aoutpq (un−1p − un−1q ) (2.9)
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with outflow weighting factors θoutpq ∈ [0, 1] and corrected inflows Ainpq given by the
strategy explained below.

It is clear that if the following two conditions

un−1p − τ

h2

∑
q∈N ′(p)

θoutpq aoutpq (un−1p − un−1q ) ≤ umax,n−1p , (2.10)

un−1p − τ

h2

∑
q∈N ′(p)

θoutpq aoutpq (un−1p − un−1q ) ≥ umin,n−1p , (2.11)

with umax,n−1p = max{un−1p , {un−1q , q ∈ N ′(p)}}, umin,n−1p = min{un−1p , {un−1q , q ∈
N ′(p)}}, are fulfilled in every finite volume p then the numerical solution fulfills the
discrete minimum-maximum principle. In order to have conditions (2.10) and (2.11)
satisfied it is sufficient that the following two inequalities

un−1p

nout
− τ

h2
θoutpq aoutpq (un−1p − un−1q ) ≤

umax,n−1p

nout
, (2.12)

un−1p

nout
− τ

h2
θoutpq aoutpq (un−1p − un−1q ) ≥

umin,n−1p

nout
(2.13)

hold for every q ∈ N ′(p) where aoutpq (un−1p − un−1q ) 6= 0. The symbol noutp denotes the
number of nonzero outflows from the finite volume p to all its neighbours, i.e.

noutp =
∑

q∈N ′(p)

abs (sign(aoutpq (un−1p − un−1q ))). (2.14)

Clearly, if we sum (2.12), respectively (2.13), over all q ∈ N ′(p), we obtain (2.10),
respectively (2.11). It remains to define the coefficients θoutpq which would satisfy
(2.12)-(2.13) and it can be done as follows

θoutpq = min

(
1,

h2(umax,n−1p − un−1p )

τnoutp aoutpq (un−1q − un−1p )

)
, if aoutpq (un−1q − un−1p ) > 0, (2.15)

θoutpq = min

(
1,

h2(umin,n−1p − un−1p )

τnoutp aoutpq (un−1q − un−1p )

)
, if aoutpq (un−1q − un−1p ) < 0, (2.16)

θoutpq = 1, if aoutpq (un−1q − un−1p ) = 0. (2.17)

By using these definitions we have reduced the otflow coefficients in the scheme (2.9)
by the factor (1− θoutpq )aoutpq which must be added to the inflows of the neighbours. To
that goal we define

Ainqp = ainqp − (1− θoutpq )aoutpq (2.18)

what determines the new inflow coefficients in the scheme (2.9).
Our final numerical scheme is a two-step combination of (2.8) and (2.9). It relies

on the fact that in rather general cases the IIOE scheme (2.8) does not need any
stabilization in order to fulfill the discrete minimum-maximum principle. Hence, in
the first step we solve (2.8). In the second step we recalculate the coefficients θoutpq

and Ainqp according to (2.15) - (2.18), but only in finite volumes p where the local
minimum-maximum principle was violated, and resolve the problem using the scheme
(2.9). We call this algorithm S2IIOE and summarize it as follows:
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Table 3.1
Errors in L2(I,Ω) norm and EOCs for the schemes for the exact solution (3.1)

.
nx, ny DIAMOND-CELL EOC IIOE EOC S2IIOE EOC

20 1.76 10−2 - 1.05 10−2 - 1.04 10−2 -
40 8.09 10−3 1.12 5.63 10−3 0.90 5.56 10−3 0.90
80 2.85 10−3 1.50 2.25 10−3 1.32 2.27 10−3 1.29
160 8.21 10−4 1.79 6.78 10−4 1.74 7.14 10−4 1.67
320 1.88 10−4 2.13 1.57 10−4 2.11 1.92 10−4 1.89

S2IIOE scheme for tensor diffusion:

1. solve (2.9) with θoutpq = 1, Ainpq = ainpq

2. if unp > umax,n−1p or unp < umin,n−1p , redefine θoutpq

and Ainqp according to (2.15)− (2.18) and solve (2.9).

3. Numerical experiments. In this section we first compare the experimental
order of convergence (EOC) of the above described methods using the exact solution
to the equation (1.1) with inhomogeneous Dirichlet boundary conditions. In the
second subsection we discuss stability features of the schemes on the example when
an initial impulse diffuses given zero Neumann boundary conditions. We discretize
the computational domain [−xL, xR]× [−yL, yR] into nx× ny finite volumes and the
time interval [0, T ] into nts time steps such that h = (xR − xL)/nx = (yR − yL)/ny,
τ = T/nts. The solution of the arising linear systems is computed by the standard
SOR algorithm. The diffusion tensor for both experiments is given by the matrix

D =

(
2 1.99

1.99 2

)
.

with eigenvectors (
√
2
2 ,
√
2
2 )T and (−

√
2
2 ,
√
2
2 )T and eigenvalues 3.99 and 0.01 thus the

diffusion is much stronger in the diagonal direction y = x.

3.1. Comparison with exact solution. Numerical experiments in this part
are done using the exact solution to the problem (1.1) which has, for a symmetric
positive-definite matrix D, the form

u(x, t) =
1

4πt
√
|D|

exp
xTD−1x

4t
(3.1)

where |D| denotes determinant and D−1 inverse of the matrix D. The Dirichlet
boundary conditions are determined according to (3.1). The computational domain
is Ω = [−1, 1]× [−1, 1], T = 0.1 and as the initial condition we take u(x, 1) from (3.1).
The time and space discretization is such that the coupling τ = h2 and nx = ny hold.

In Table 3.1 one can see that for such smooth solution (but strongly anisotropic
diffusion tensor) all the schemes tend to be second order accurate when refining the
grid. Interestingly, the inflow-implicit/outflow-explicit splitting does not bring any
additional error but slightly improved the absolute errors in L2(I,Ω) norm in this
example. Since the stabilization is really performed in a subset of all finite volumes
we can observe slower convergence to EOC=2 in case of S2IIOE scheme which is in
accordance with our expectations and observable property of high-resolution schemes.
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Fig. 3.1. The piecewise constant initial condition - 3D graph (left) and corresponding 2D image
(right).

3.2. Experiment related to discrete minimum-maximum principle. In
this experiment we use the same computational domain and coupling between space
and time step as above but the initial condition is a piecewise constant function with
the value u(x, 0) = 0 in the region [−0.25, 0.25] × [−0.25, 0.25] and with u(x, 0) = 1
outside it. The initial condition is plotted in Figure 3.1 as 3D graph (left) and as
2D image (right). We compare the standard diamod-cell and S2IIOE schemes on
the evolution of this piecewise constant initial profile, the results are presented in
Figures 3.2-3.6 for computational grid with nx = ny = 200. The diamond-cell scheme
produces some oscillations (the numerical solution becomes slightly greater than 1,
see also Figure 3.5) and we highlight such regions using transformation ū(x, t) =
u(x, t) − 1. After this transformation the oscillatory regions are visible as the black
color stripes in 2D image plots of ū(x, t). While the overall maximum in all time steps
for the diamod-cell scheme was 1.016993, for the S2IIOE it was 1.0. As one can see
from the numerical results, the S2IIOE scheme removes the oscillations and keep the
shape of non-oscillatory part of the solution in right way. It also fulfills strictly the
global discrete minimum-maximum principle. In Figure 3.5 we compare visually one
cross-section documenting such oscillatory behaviour of the standard diamond-cell
scheme and non-oscillatory behaviour of the S2IIOE scheme. In Figure 3.6 we show
the strongly anisotropic profile with shock-like lines formed after 50 time steps of the
tensor diffusion computed by S2IIOE scheme.

Another interesting question is the mass conservation for the stabilized version
of the schemes which are conservative (both diamond-cell and IIOE fulfill such prop-
erty). For the S2IIOE scheme we got the mass errors 0.00153, 0.000458, 0.000154
and 0.0000565 when refining the grids by using nx = ny = 100, 200, 400, 800. It
shows the convergence in mass conservation of order 1, tending to 1 from above in
this example. We note that in more complicated piecewise constant initial profile
experiments with zero Neumann boundary conditions we observed convergence order
in mass error tending to 1 from below, so the stabilized version seems to fulfill the
mass conservation property with order 1 in general.
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Fig. 3.2. 2D images of tensor diffusion result computed by the standard diamond-cell scheme
(left) and S2IIOE scheme (right) at the 4th time step.

Fig. 3.3. 2D images of tensor diffusion result computed by the standard diamond-cell scheme
(left) and S2IIOE scheme (right) at the 20th time step.

Fig. 3.4. 2D images of tensor diffusion result computed by the standard diamond-cell scheme
(left) and S2IIOE scheme (right) at the 50th time step.
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Fig. 3.5. Cross-section of the numerical solution profile at x = −0.55 in the 50th time step -
result of the standard diamond-cell scheme (left) and result of the S2IIOE scheme (right).

Fig. 3.6. The solution of tensor diffusion computed by S2IIOE scheme in the 50th time step,
the top view (left) and bottom view (right).

4. Conclusions. In this article we introduced a new stabilized semi-implicit
finite volume scheme for solving tensor diffusion equations. It is based on inflow-
implicit/outflow-explicit (IIOE) splitting of the standard diamond-cell method and
stabilization by a two-step procedure by decreasing outflow coefficients in finite vol-
umes where the application of the basic IIOE scheme violates the local discrete
minimum-maximum principle and increasing inflow coefficients of their neighbours.
Since such stabilization decreases the range of the right hand side of the system and
increases the diffusive properties of the system matrix, we do not expect that any
further local oscillations appear after the second step. Although this statement is
not studied theoretically yet, it coincides with our observations performing numerical
experiments. We studied the experimental convergence order of the new scheme and
showed that it is same as for the non-stabilized method in case of the smooth exact
solution. We have also shown non-oscillatory behaviour of the new scheme in case of
piecewise constant initial profile and strongly anisotropic diffusion tensor. A further
study of the proposed numerical scheme will be an objective of our research in the
near future.
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