
Proceedings of ALGORITMY 2012
pp. 32–41

IMMERSED INTERFACE METHOD FOR A LEVEL SET
FORMULATION OF PROBLEMS WITH MOVING BOUNDARIES∗

PETER FROLKOVIČ†

Abstract. The motivation of this study is a numerical solution of Laplace equation −∆p = 0
on a time dependent domain that contains a moving boundary evolving with a speed depending
on the gradient ∇p. We use a level set formulation of this problem and propose an immersed
interface method for the numerical solution of some partial differential equations solved in the level
set formulation. This paper can be seen as an accompanying publication to [4] where an application
to groundwater flow with dynamic water table is studied. Additionally to [4], technical details of the
level set and immersed interface method are given and a new numerical experiment is provided.

Key words. level set method, immersed interface method, finite volume method

AMS subject classifications. 65M08, 65N08, 35R37

1. Introduction. Our representative model is the Laplace equation

−∆p(x, t) = 0 , x ∈ Ω(t) ⊂ R2 , (1.1)

where the dependency of p on t is only due to the time dependent domain Ω(t),
t ∈ [0, T ]. The domain is changing in time due to its moving boundary (or some part
of it) denoted by Γ(t), i.e. Γ(t) ⊂ ∂Ω(t). Moreover we suppose that the movement of
Γ(t) is driven by a vector function ~V that depends on ∇p.

A popular numerical method to solve (1.1) for a fixed time t is the immersed
interface method [11, 12]. The idea of the method is to immerse the boundary (or
“interface”) Γ(t) into some fixed domain D such that Ω(t) ⊂ D. The problem (1.1)
is then extended to D and the boundary conditions on Γ(t) are treated without
an explicit reconstruction of Γ(t). We note that in many applications the problem
defined on Ω(t) is coupled through some interface condition given on Γ(t) with another
problem defined on D \ Ω(t), see [11, 12].

To model the moving boundary Γ(t) for t ∈ [0, T ] we use the level set formulation
[14, 13]. This formulation is very natural when solving (1.1) with some immersed
interface methods. The interface Γ(t) in such methods is very often defined implicitly
as the zero level set of some level set function. The time evolution of this function
can be then obtained as a solution of some level set advection equation solved on D.
The advection velocity in this equation must depend on ~V .

To construct the advection equation for the level set function we use an approach
presented in [1]. In this approach, two additional equations are defined in the level
set formulation, the eikonal equation and the equation for so called extension velocity.
The equations are accompanied with Dirichlet boundary conditions given on Γ(t). To
solve such equations with some standard level set methods, the boundary conditions
must be reconstructed explicitly for grid nodes near the interface Γ(t), see [1]. The
idea presented in this paper is to avoid such reconstruction and to apply the immersed

∗This work was supported by VEGA 1/1137/12 and APVV-0184-10.
†Department of Mathematics and Descriptive Geometry, Slovak University of Technology,

Radlinského 11, 81368 Bratislava, Slovakia (peter.frolkovic@stuba.sk).

32



IMMERSED INTERFACE LEVEL SET FORMULATION 33

interface method for the numerical solution of eikonal equation and the extrapolation
equation for the extension velocity.

2. Immersed interface level set formulation. Let D represent a fixed do-
main that encloses Ω(t) during the considered time interval, i.e. Ω(t) ⊂ D, t ∈ [0, T ].
The part of D outside of Ω(t) will be denoted by Ωout(t) := D \Ω(t). If Γ(t) is not a
closed curve, the end points shall lie on ∂D.

The main principle of level set formulation is to describe Γ(t) implicitly as a zero
level set of some smooth (“level set”) function φ = φ(x, t) together with a convenient
sign property,

φ(x, t) = 0 , x ∈ D ⇔ x ∈ Γ(t) , (2.1)
φ(x, t) < 0 , x ∈ D ⇔ x ∈ Ω(t) . (2.2)

The level set function offers several geometrical information about Γ(t) and Ω(t)
in a straightforward algebraic way. Particularly, the sign property (2.2) helps to
identify easily if x ∈ Ω(t) or not. The normalized gradient (if it exists and is nonzero)
of any level set function that fulfills (2.1) and (2.2) coincides at Γ(t) with its unit
outward normal vector ~Nγ , i.e.

~Nγ =
∇φ(γ, t)
|∇φ(γ, t)|

, γ ∈ Γ(t) . (2.3)

A popular particular choice for the implicit representation of Γ(t) is the so called
signed distance function, say Φ = Φ(x, t), that can be found as a weak solution of
nonlinear eikonal equation, see e.g. [14, 13],

|∇Φ| = 1 , x ∈ D , Φ(x, t) = 0 , x ∈ Γ(t) . (2.4)

Following [14], the weak solution of (2.4) is a continuous function on D × [0, T ],
and its gradient is defined almost everywhere in D × [0, T ]. The name of signed
distance function Φ is justified by its property [14]

Φ(x, t) =


min
γ∈Γ(t)

|x− γ| , x ∈ Ωout(t)

− min
γ∈Γ(t)

|x− γ| , x ∈ Ω(t). (2.5)

The time dependency of Φ is again only due to the variability of Γ(t) in time. Clearly,
Φ(x, t) describes Γ(t) in an implicit way as required by (2.1) and (2.2).

The most important advantage of level set formulation is the possibility to use
Eulerian type of numerical methods to track the movement of Γ(t). Before explaining
it we introduce a Lagrangian description that might be more related to a physical
interpretation of this process.

Let the initial position Γ(0) of interface be given. One can view the moving
position Γ(t) as a tracking of trajectories X = X(P, t) for all points P located at
Γ(0), i.e.

Γ(t) = {X(P, t); P ∈ Γ(0)} , t ∈ [0, T ] . (2.6)

Consequently, for any γ ∈ Γ(t) and t ∈ [0, T ] there exists a point P ∈ Γ(0) such that
γ = X(P, t).



34 P. FROLKOVIČ

From this point of view, the Lagrangian description of moving interface is typ-
ically given by a parametric system of ordinary differential equations for unknown
trajectories X = X(P, t),

∂tX = ~V (X, t) , t ∈ [0, T ] , X(P, 0) = P , (2.7)

where ~V = ~V (γ, t) is some prescribed velocity defined at the interface for γ ∈ Γ(t).
The position Γ(t) can be then determined by solving (2.7) for all P ∈ Γ(0) and using
(2.6).

The related Eulerian description for capturing the position Γ(t) using a level set
formulation can be now constructed. Before doing it, we replace the velocity ~V by a
vector field S ~Nγ to describe the movement of Γ(t), where S is the component of ~V
projected on the normal direction ~Nγ , i.e.

S(γ, t) = ~Nγ · ~V (γ, t) , γ ∈ Γ(t) . (2.8)

By doing so, we neglect the movement of points P ∈ Γ(t) along the interface Γ(t).
Consequently, by replacing ~V in (2.7) with S ~Nγ one does not follow anymore the
trajectories X(P, t). Nevertheless, the movement of Γ(t) as a whole curve does not
change when moving it only in its normal direction with the speed S.

To finish the Eulerian description one needs some functions s = s(x, t) and ~N =
~N(x, t) that are defined for (x, t) ∈ D× [0, T ] and that coincides with S(γ, t) and ~Nγ
for γ ∈ Γ(t).

If these functions are available, the level set function φ = φ(x, t) in (2.1) is
searched by solving the following advection equation

∂tφ+ s ~N · ∇φ = 0 , φ(x, 0) = φ0(x) . (2.9)

The initial level set function φ0 = φ0(x) in (2.9) must be a smooth function such
that Γ(0) = {φ0(x) = 0, x ∈ D} and the sign property (2.2) is fulfilled. For practical
reasons we prefer the signed distance function, i.e. φ0(x) = Φ(x, 0). For a simple
initial interface such function can be defined straightforwardly, see (2.5), in general
the eikonal equation (2.4) to find Φ(x, 0) has to be solved.

Note that s and ~N in (2.9) need not to be available directly in a particular appli-
cation. Therefore these functions shall be determined by some appropriate extension
of their known values for γ ∈ Γ(t). We describe next how to obtain such globally
defined functions s and ~N , see also [1, 9, 4].

Firstly, we set

~N(x, t) = ∇Φ(x, t) , x ∈ D , t ∈ [0, T ] . (2.10)

The signed distance function Φ(x, t) in (2.10) is obtained by solving the eikonal equa-
tion (2.4).

The gradient ∇Φ(x, t), if it exists and is nonzero, is already normalized due to
(2.4), it coincides with ~Nγ at γ ∈ Γ(t) and has some additional favorable properties.
Namely, if Φ(x, t) 6= 0 and γ ∈ Γ(t) is the point in which the minimum in (2.5)
is realized for x, then ∇Φ is a constant vector for all points along the straight line
connecting the points γ and x. Consequently, ∇Φ (if it exists) can be seen as a
constant prolongation of normal vectors ~Nγ from γ ∈ Γ(t) up to the point x ∈ D.



IMMERSED INTERFACE LEVEL SET FORMULATION 35

This property of ∇Φ can be conveniently used also for an extrapolation of the
speed S(γ, t) in the direction of normals to define s(x, t) by solving the equation

∇Φ · ∇s = 0 , x ∈ D , s(γ, t) = S(γ, t) , γ ∈ Γ(t) . (2.11)

The solution s of (2.11) can be viewed as a constant prolongation of values S(γ, t)
from γ ∈ Γ(t) along the straight lines given by the direction of ~Nγ up to points where
∇Φ is still well defined. It is called the extension velocity in [1]. In general, s(x, t)
can be discontinuous at points x ∈ D and t ∈ [0, T ] where ∇Φ(x, t) does not exists.

The level set formulation of (1.1) now consists of solving (1.1) simultaneously with
the equations (2.4), (2.11) and (2.9). We call it the immersed interface formulation
because the moving boundary Γ(t) (for which some boundary conditions in equations
(1.1), (2.4) and (2.11) are defined) is given only implicitly as the zero level set of
φ(x, t) from (2.9).

3. Finite volume discretization. We describe the flux-based level set method
[5, 6] for the numerical solution of advection equations (2.4),(2.9) and (2.11). Before
doing it, we introduce the advection equation of related general form,

∂τu+ ~v · ∇u = r , u(x, 0) = u0(x) , (3.1)

where u = u(x, τ) is the unknown function, τ is a (pseudo-) time variable, u0 is a given
initial function, ~v = ~v(x,∇u) is a prescribed velocity function and r is a constant right
hand side. Clearly, the eikonal equation (2.4), the extrapolation equation (2.11) and
the advection equation (2.9) can be seen as particular forms of (3.1), see also [4] for
some details.

Let the domain D ⊂ R2 be polygonal and triangulated using triangles T e, e =
1, 2, . . . , E. The vertices (nodes) of the triangulation are denoted by xi, i = 1, 2, . . . , I
and located in the corners of triangles. The time interval is divided into subintervals
0 = τ0 < τ1 < . . . and ∆τm = τm+1 − τm. Our aim is to derive a fully explicit (in
time) flux-based level set method to solve (3.1) to approximate um+1

i ≈ u(xi, τm+1).
With the triangulation and its vertices we associate piecewise linear functions

ψi = ψi(x), x ∈ D such that ψi(xj) = δij for i, j = 1, 2, . . . , I and define

ũm(x) =
I∑
i=1

umi ψi(x) . (3.2)

We denote by ∇eψi the constant gradient of ψi(x) for x ∈ T e and analogously
∇eum := ∇ũm(x) for x ∈ T e.

The so called vertex-centered finite volume discretization, see [7, 6] for details, is
based on “finite volumes” Vi that are associated with the vertices xi and the bound-
aries ∂Vi are made of line segments Γeij such that

∂Vi =
⋃
e∈Λi

⋃
j∈Λe

i

Γeij , Γeij := ∂Vi ∩ ∂Vj ∩ T e, Γei0 := ∂Vi ∩ ∂D ∩ T e. (3.3)

In (3.3), Λi is a set of indices e of all T e of which xi is a corner, and Λei is a set of
indices j of all corners xj of T e except xi and 0 ∈ Λei if Γeij ⊂ ∂D, for an illustration
see Figure 3.1.

Let us suppose first that Ω(tn) ≡ D, the immersed interface formulation when
Ω(tn) ⊂ D will be given later.



36 P. FROLKOVIČ

T e

xi

Vi

xj
Γeij
Γej0

Vj

Fig. 3.1. Notation used for finite volume method.

To derive the numerical scheme we fix the velocity ~v at time τm and use a shorter
notation ~v(x) := ~v(x,∇u(x, τm)) and ~veij ≈ ~v(xeij). Following [6, 8], the flux-based
level set method is defined by

um+1
i = umi +

∆τm

|Vi|

r −∑
e∈Λi

∑
j∈Λe

i

|Γeij |~neij · ~veij(u
e,m+1/2
ij − um+1/2

i )

 . (3.4)

In above, ~neij is the unit normal vector w.r.t. Γeij pointing from Vi to Vj (if j 6= 0) or
to outside if j = 0. Furthermore, |Vi| is the area of Vi, |Γeij | is the length of Γeij .

Furthermore,

u
m+1/2
i = umi −

∆τm

2
~vi · (∇u)mi , (3.5)

u
e,m+1/2
ij = umi +

(
xeij −

∆τm

2
~vi

)
· (∇u)mi , if ~neij · ~veij > 0 , (3.6)

where ~vi ≈ ~v(xi) and

(∇u)mi =
1
|Vi|

∑
e∈Λi

|T e ∩ Vi|
∑
k∈Λe

i

(umk − umi )∇eψk . (3.7)

A more detailed description of all derivations used to define (3.4) including sup-
plementary information on the treatment of boundary conditions can be found in
[6, 8, 3].

The numerical scheme (3.4) is fully explicit in time and enables us to compute
directly the values um+1

i in sequence for m = 0, 1, . . .. It has a natural restriction
on the choice of time step ∆τm that can be formulated for the flux-based level set
method [5, 6] by requiring

∆τm max
i

 1
|Vi|

∑
e∈Λi

∑
j∈Λe

i

max{0,−~neij · ~veij}

 ≤ 1 . (3.8)

We give now some details for particular forms of the advection equation (3.1). To
solve the eikonal equation (2.4) in D, we search stationary solutions of two equations,

∂τu+ |∇u| = 1 , (x, τ) ∈ Ωout(t)× (0,∞) , u(γ, τ) = 0 , γ ∈ Γ(t) , (3.9)



IMMERSED INTERFACE LEVEL SET FORMULATION 37

∂τu− |∇u| = −1 , (x, τ) ∈ Ω(t)× (0,∞) , u(γ, τ) = 0 , γ ∈ Γ(t) , (3.10)

with the initial condition u(x, 0) = φ(x, tn). The finite volume discretization can be
written conveniently in the form

um+1
i = umi + ∆τm

(
1− (|∇u|)m+1/2

i

)
, (3.11)

where

(|∇u|)m+1/2
i =

∑
e∈Λi

∑
j∈Λe

i

|Γeij |~neij ·
∇eũm

|∇eũm|
(ue,m+1/2
ij − um+1/2

i ) . (3.12)

One has to compute (3.9) for m = 0, 1, . . . ,M − 1 where M is chosen sufficiently
large. When done, one can set Φ̃n(x) = ũM (x) where Φ̃n(x) ≈ Φ(x, tn). Analogously,
one proceed with the complementary equation (3.10). When done, the function Φ̃n(x)
is defined for x ∈ D analogously to (3.2).

Afterward, the extrapolation equation (2.11) in Ωout(t) can be solved by searching
for a stationary solution of the equation

∂τu+
∇Φ(x, tn)
|∇Φ(x, tn)|

· ∇u = 0 , u(γ, τ) = S(γ, t) , γ ∈ Γ(t) (3.13)

for (x, τ) ∈ Ωout(t) × (0,∞) with some initial condition for u(x, 0), e.g. u(x, 0) ≡ 0.
The finite volume discretization for (3.13) takes then the form

um+1
i = umi + ∆τm

∑
e∈Λi

∑
j∈Λe

i

|Γeij |~neij ·
∇eΦ̃n

|∇eΦ̃n|
(ue,m+1/2
ij − um+1/2

i ) . (3.14)

Again, one has to use (3.14) for m = 0, 1, 2, . . . ,M − 1 with sufficiently large M .
When ready, one can set s̃n(x) = ũM (x) where s̃n(x) ≈ s(x, tn).

Similarly to (3.10), one has to treat the complementary problem of (3.13) in Ω(tn).
At the end the function s̃n(x) is defined for x ∈ D.

When Φ̃n(x) and s̃n(x) are available, one can apply (3.4) to solve the advection
equation (2.9) in the following form,

φn+1
i = φni −

∆τn

|Vi|
∑
e∈Λi

∑
j∈Λe

i

|Γeij |s̃n(xeij)~n
e
ij ·
∇eΦ̃n

|∇eΦ̃n|
(φe,n+1/2
ij − φn+1/2

i ). (3.15)

In the next section we discuss the immersed interface method when solving (3.1)
on implicitly defined domain Ωout(t), respectively on Ω(t).

4. Immersed interface formulation. Next we extend the described finite vol-
ume discretization for the case of Ω(tn) ⊂ D using the immersed interface method
[11, 12, 9, 3, 4].

Let the approximation φ̃n(x) ≈ φ(x, tn), given analogously to (3.2), define im-
plicitly the approximative boundary Γn ≈ Γ(tn) and the domain Ωn ≈ Ω(tn). We
describe now the necessary modifications or extensions of (3.4) when solved on Ωn.
Analogous treatment shall be done when solving it on D \ Ωn.

We suppose that u(γ, t) is given by Dirichlet boundary conditions, i.e. for a given
function uD one has

u(γ, τ) = uD(γ, tn) , γ ∈ Γ(tn) , τ ≥ 0 . (4.1)



38 P. FROLKOVIČ

Because the boundary Γ(tn) ⊂ ∂Ω(tn) is given only implicitly, the boundary con-
ditions (4.1) will be treated by immersed interface method. We do not describe
boundary conditions on the rest of boundary ∂Ω(tn) ∩ ∂D that can be treated by
standard numerical techniques.

Firstly, if φni > 0 then xi 6∈ Ωn and the discrete equations (3.4) are not considered.
If φni = 0, the value of u is set directly by umi = uD(xi, tn) for xi ∈ Γn.

It remains to specify (3.4) for indices i such that φni < 0. In fact, these discrete
equations are well defined if φni < 0 and φnj ≤ 0 for j ∈ Λei and e ∈ Λi, meaning that
xi is far away from Γn. On the other hand, the equations (3.4) can not be computed
directly if φni < 0 and there exists a finite element T e, e ∈ Λi and a vertex xj , j ∈ Λei
such that φnj > 0. In such a case, the finite element T e is intersected by Γn and the
discrete variable umj is not available, therefore one has to add a description how (3.4)
shall be computed.

If φni < 0 and φnj > 0 and j ∈ Λei , there exists a point γnij lying on the edge
connecting xi and xj such that φ̃n(γnij) = 0. From linear interpolation of φni and φnj
on this edge we obtain

γnij =
αnij − 1
αnij

xi +
1
αnij

xj , (4.2)

αnij =
φni

φni − φnj
. (4.3)

Computing αnij according to (4.3) one can extrapolate the missing value umj using the
linear interpolation ũm(x) of the known values umi and uD(γnij),

umj =
αnij − 1
αnij

umi +
1
αnij

uD(γnij) . (4.4)

In theory, αnij 6= 0, so (4.2) is well defined. In practice, for a chosen triangulation
an appropriate parameter 0 < ε � 1 shall be defined and if −ε < φni < 0 then one
sets directly γnij = xi.

The idea of immersed interface method is to use (4.4) for each i-th discrete equa-
tion (3.4) when necessary. Note that no geometric reconstruction of Γn is required in
this method.

Analogous immersed interface method can be used to solve the Laplace equation
(1.1) that is published elsewhere [4]. Despite the analogy, there is one important
difference when applying the immersed interface method for elliptic equation (1.1)
and for hyperbolic problem (3.1). In the latter case, we use the discretization that is
explicit in time and that has the CFL type of restriction (3.8) for the choice of time
step.

Considering the simplest possible one-dimensional form of (3.1) with a constant
velocity v and Dirichlet boundary conditions, one can easily show that the resulting
scheme (3.4), when using the immersed interface formulation, requires a time step
that must be proportional to the distance between γnij and xi. As this distance can
be arbitrary small in our applications, the related restriction on the time step would
make the unmodified immersed interface method extremely inefficient.

Fortunately, one can introduce a simple extension [3] of the immersed interface
method to remove such time step restriction for (3.4) when applying it to (3.9) and



IMMERSED INTERFACE LEVEL SET FORMULATION 39

(3.13) that we describe next. In fact, similarly motivated extensions are used in
[2, 5] to remove the CFL type of restriction for finite volume discretization of some
advection equations.

In our extension of immersed interface method we modify the i-th discrete equa-
tion (3.11) for all vertices xi near the interface Γn, i.e. when there exists e and j such
that i ∈ Λe, j ∈ Λei and φmi < 0 and φmj > 0. To do so, we consider (3.11) with r ≡ 0,
when it takes the form

um+1
i = umi −∆τm (|∇u|)m+1/2

i . (4.5)

The corresponding differential equation for x ∈ Ωout(tn) and τ ≥ τm with Dirich-
let boundary conditions u(γ, τm) = 0 at γ ∈ Γ(tn) and initial condition u(x, τm) > 0
for x ∈ Ωout(tn), see (2.2), can be written as

∂tu+ |∇u| = 0 . (4.6)

Without going into too much details, see [3, 8, 14] for more information, the scheme
(4.5) can be used for the approximation of “first arrival time”, say the (pseudo-) time
τi at which the interface, when moving from the initial position Γn at τ = τm with
the speed 1 in its normal direction, will cross the point xi and so u(xi, τm + τi) = 0.

Note that we derive the following considerations only for the vertices xi near the
interface Γn. Clearly, umi > 0. Consequently, if (|∇u|)m+1/2

i > 0 in (4.5) then for
some time step, say ∆τmi , one must obtain um+1

i = 0 and

∆τmi =
1

(|∇u|)m+1/2
i

umi . (4.7)

For the unmodified scheme (3.11), one has the restriction ∆τm ≤ ∆τmi , because
otherwise um+1

i < 0 in (4.5) that is unphysical.
Now it is simple to modify the scheme (4.5) to include the case ∆τm > τmi by

simply splitting ∆τm = ∆τmi + (∆τm −∆τmi ) and considering that u(xi, τ) = 0 for
τ ≥ τm + ∆τmi . Therefore, when applying this idea to (3.11), the scheme is modified
to the form

um+1
i = umi + min{∆τm,∆τmi }

(
1− (|∇u|)m+1/2

i

)
. (4.8)

Analogous treatment for the vertices xi near the interface as in (4.8) is also valid
for the complementary eikonal equation (3.10) and an equivalent replacement of the
time step ∆τm as in (4.8) must be done also for the discrete scheme (3.15).

5. Numerical experiments. We present an example taken from [10] that is
motivated by the computations of moving water table for a dam. The Laplace equa-
tion for p(x, y) is solved in a non-dimensional fashion on a quadrangleD = [0, 6]×[0, 5].
The value p = 0 is prescribed at the top and the right side of D. At the bottom side
of D one has p(x, 0) = 0 for x ∈ [3, 6] and ∂yp(x, 0) = −1 for x ∈ (0, 3). Finally at
the left side of D the values p(0, y) = 6− y are prescribed, see also Figure 5.1.

For this initial setting, i.e. t = 0 and Ω(0) ≡ D, the approximative pressure p
from (1.1) is computed with standard finite volume method from the Section 3. The
mesh has 33× 33 grid nodes and 2048 triangles. The numerical results are presented
in Figure 5.1. In this Figure, the corresponding groundwater flow velocity is presented
that is described in an analytical way by ~V = −∇p+ (0,−1).



40 P. FROLKOVIČ

Fig. 5.1. The left picture shows the computed pressure at t = 0 (ten contour lines from 0.5 up
to 5.5) and the right picture the corresponding vector field −∇p + (0,−1).

Having ~V , we continue the computations by considering the top side of D to be
the moving boundary with the speed ~V as described in this paper. The evolution of
moving boundary up to T = 12 where (practically) a stationary state is reached, can
be found in Figure 5.2.

Fig. 5.2. The evolution of moving boundary for t = 1, 2, . . . , 7 and for t = 12. The left picture
shows the evolution for the finer grid, the right one for the coarser grid to illustrate a good visual
grid convergence of the numerical solution.

In Figure 5.2, the results are presented not only for the grid of 33 × 33 nodes,
but also for a coarser grid (17× 17 nodes) to illustrate a numerical grid convergence
for the problem. The time step ∆t for the coarser grid is 0.05, for the finer one
has ∆t = 0.025. The computed pressure and the corresponding vector field for the
stationary situation can be seen in Figure 5.3.



IMMERSED INTERFACE LEVEL SET FORMULATION 41

Fig. 5.3. The computed pressure at t = 0.95 together with the position of moving boundary (the

left picture) and the corresponding vector field ~V = −∇p + (0,−1) (the right picture).

REFERENCES

[1] D. Adalsteinsson and J. Sethian. The fast construction of extension velocities in level set
methods. J. Comput. Phys., 148:2–22, 1999.

[2] P. Frolkovič. Flux-based method of characteristics for contaminant transport in flowing ground-
water. Comput. Visual. Sci., 5(2):73–83, 2002.

[3] P. Frolkovič. Flux-based level set method for extrapolation along characteristics using immersed
interface formulation. In P. Struk, editor, Magia, pages 15–26, 2010.

[4] P. Frolkovič. Application of level set method for groundwater flow with moving boundary. Adv.
Water Resour., accepted, 2012.

[5] P. Frolkovič and K. Mikula. Flux-based level set method: A finite volume method for evolving
interfaces. Appl. Numer. Math., 57(4):436–454, 2007.

[6] P. Frolkovič and K. Mikula. High-resolution flux-based level set method. SIAM J. Sci. Comp.,
29(2):579–597, 2007.

[7] P. Frolkovič and H. De Schepper. Numerical modelling of convection dominated transport
coupled with density driven flow in porous media. Adv. Water Resour., 24(1):63–72, 2001.

[8] P. Frolkovič and C. Wehner. Flux-based level set method on rectangular grids and computations
of first arrival time functions. Comput. Visual. Sci., 12(5):297–306, 2009.

[9] P. Frolkovič and P. Zacharovská. Numerical Modeling of Dynamic Groundwater Table Using
Level Set Formulation. In XVIII International Conference on Water Resources, CIMNE,
Barcelona, 2010.

[10] S.J. Lacy and J.H. Prevost. Flow through porous media: A procedure for locating the free
surface. Int. J. Num. Anal. Methods Geomech., 11:585–601, 1987.

[11] R.J. Leveque and Z. Li. The immersed interface method for elliptic equations with discontinuous
coefficients and singular sources. SIAM J. Numer. Anal., 31(4):1019–1044, 1994.

[12] Z. Li and K. Ito. The immersed interface method: numerical solutions of PDEs involving
interfaces and irregular domains. SIAM, 2006.

[13] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer, 2003.
[14] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.


