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RELIABILITY OF MODELS FOR SEEPAGE FLOW WITH RESPECT TO
CORRECT FORMULATION OF BOUNDARY PROBLEM

KAROL  KOSORIN

Abstract. Some groundwater flow models even  commercially successful meet troubles at
pratical application in complex and large aquifers with free surface. Part of them origin from lack of
information on input data, other stem from model properties as consequence of particular
simplification of flow  phenomena. The paper deals with the second group.  Namely with the problem
of free boundary.  Reasons and nature of the most frequent problems and  limitation their in use are
treated there from hydrodynamic point of view. It is shown, that a possible way out  leads through
the well posed boundary problem only. The paper also presents some basic information on the
effective model systems INKANS and SKOKY being built up on correct solution of these problems.
The solution arises from methodological possibilities of the hydrodynamic theory of boundaries
(Kosorin 1983, 1993) and directly relates to solution of the problem of unknown moving boundary of
flow.Both models have been successfuly applied to various simulation tasks, e.g. INKANS to the 3-D
groundwater dynamics in large aquifer with complex interaction with channel and river system. 3-D
pressure and velocity fields in domains with flow singularities were simulated by SKOKY. Several
application samples are presented in grafical form.

Key words: Model  Reliability and  Limitations,  Hydrodynamic Theory of Boundaries, Free
Surface Flow, Well Posed Boundary Conditions,  Free Boundary  problems, Hydrodynamics Theory
of Boundaries,  Velocity Jump Relations.

I. Introduction. The problem of free (moving) boundary occurs when the
model domain has a free surface of water and such flow patern, which does not
allow any simplifying e.g. by shallow water theory assumptions leading to the
Boussinesq type of model. Boundary condition on free surface  is nonlinear and
moreover it contains additional unknown (free surface position) of the model.
Since this condition is unplesant, many standard and commercialy successful
model systems do not respect it, e.g. MODFLOW, MIKE SHE and others, see (Mc
Donald and Harbaugh 1988) and (Refsgaard et all. 1995). But, of course, such
avoiding this problem usualy brings troubles with computational accuracy, (see e.g.
(Refsgaard et all. 1995), because this boundary condition guarantees the mass
conservation in model computations.

Strongly nonhomogeneous and  layered aquifer also require specific approach
due to discontinuities in velocity field.  Nevertheless,  this  problem  can  be
overcome by proper use of standard computational methods.  I. Kazda in [ 1] gives
suitable example for groundwater flow simulation in multilayered rock continuum
by such a way.

Since  some mentioned problem  and their solution have use in the mathematical
model building in hydrogeology, the proper source of arguments and terminology
for next treatment has been taken from the book by Rushton and Redshaw  [7].
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II. Well posed boundary problem as necessary condition for mathematical
and numerical  model  to be correct

II.1 Confined aquifer. Substituting the velocity vector q in the mass
conservation equation

    0( ) =+ qdiv
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by Darcy´s relations and expressing  the compressibility effects of the saturated

volume element by means of the specific storage coefficient [m-1]
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then after neglecting the non-linear terms one obtains the differential equation for
the hydraulic head (potential)  P[m] in the form
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where x and t are the space and time variable, K is the hydraulic conductivity tensor
[ms-1] and  the sink/source term R[s-1] expresses the specific outer inflow/outflow
(m3s-1/m3).

It should be said, that (II.2) has the same form as it written in [6]  (appendix A1-
7) as well as in [7] (eq. 2.9 on p.16). Eq. II.1 applies on the whole domain between
impermeable   base  of aquifer 1G∂  z=h0(x,y) and impermeable top of aquifer 2G∂
z=h(x,y) as the material boundaries.   The boundaries ∂ G of G are completed by
so-called geometrical  (usually vertical) boundaries ∂ G3 conjoining the  h0 with h.

Boundary problem for domain G is formulated by eq. II.2 and the set of
boundary conditions as follow (n is the normal to boundary):

- in whole G the eq. (II.2) invalid                                                                         (II.3)

- on 0/1 =nPG ∂∂∂  (zero normal flux)                                                              (II.4)

- on 0/2 =nPG ∂∂∂   (zero normal flux)                                                             (II.5)

- on 3G∂  the normal flux or P is given                                                                (II.6)

There is also need to say that all boundaries ∂ G in set (II.3) to (II.6) are known
(given). Now it is important, that the boundary problem given by the set (II.2) -
(II.6) is well posed - in sense of uniqueness theorem (unique solution of the
problem). Therefore, only numerical model based on an appropriate solution of the
above boundary problem can always yields“  good results for good input data” .
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II.2  Unconfined aquifer. The Unconfined aquifer differs from the confined by
physical nature of the upper boundary 2G∂  what is now  the free surface (water
table). Ofcourse, this difference is crucial and has to be accepted in the boundary
conditions formulation. Namely, instead of one condition (II.5) there is  need to set
two conditions on ( ) :),,(2 tyxhzG =∂

   P = h   and   nn KVnP // −=∂∂     on     z  = h                                                 (II.7)

where Vn is the normal velocity component of the moving boundary  h(x,z,t).  The
dynamic condition  P = h  arises from constant (atmospheric) pressure and the
kinematic condition nn KVnP // −=∂∂   represents the important mass conservation
law on the free water surface.

Writing the second condition in (II.7) explicitly one obtains:

   0; =−++= whvhuhShP yxtY         on      z = h                                           (II.8)

where SY is effective porosity (specific yield), ( )wvu ,,  - the boundary velocity
vector and (ht,hx,hy)   are the partial  derivatives of the function h(x,z,t).

The boundary problem for unconfined aquifer is well posed by (II.1)- (II.6) only
if (II.8) is written instead of (II.5). Therefore any mathematical and numerical
model of groundwater flow in unconfined aquifer has to accept both conditions in
(II.8) in order to be hydrodynamically correct and to yield reliable results. The
reason is simple. The conditions  P = h  on 2G∂  alone is not sufficient, because
now the position  h  is unknown (added dependent variable of the problem).

Above formulation of the boundary problem for domain with free boundary is
known very well and agrees also with analysis in [7], (except differences in formal
approach, see pp.5 - 21). Inspite that there occur simulation models (MODFLOW,
MIKE SHE, for example), based on ill posed boundary problem without the second
(kinematic) condition in (II.8). Here is origin of  troubles with the model validation
and namely with model precision, see [6], vol. 2,  p.p. 5-18 and 5 - 54.

II.3 On compressibility effect in unconfined aquifer. The  free boundary
problem here is unpleasant because of its nonlinearity. For unsteady flow it seems
alluring to avoid the problem assuming a possibility to determine the unknown
boundary h(x,y,t) only from the basic eq. (II.2) and the first eq.  P = h in (II.7).
Incorrectness of such proceeding can be illustrated by comparison of two effects -
the aquifer compressibility and the specific yield due to free water surface
movement.

      Let us introduce the substitution

   P = h +ε  (x,y,z,t)                                                                                               (II.9)
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and integrate the eq. (II.2.) along water depth  H = h-h0. If  we apply the kinematic
condition of (II.8) and the  rule on differentiation of definite integrals with respect to
a parameter, then we obtain
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what for small ε   represents the known Boussinesq eq. (satisfying the Dupuit-
Boussinesq assumptions). The specific storage Ss is within the range 10-5 to 10-7 [m-

1], see [7], p. 19. The porosity Sy is in the range 0.1 to 0.6.  Since the value of HSs

for H<1000 m is always less than 10-2, eq. (II.10) indicates, that movement of the
free surface yields a more water than the quantity due to the compressibility effects.
Therefore the specific storage can be neglected and the differential equations quoted
above in the form for steady-state problems can be used.

      This statements agrees with those in [7] on  p. 19. Moreover, because for the
stationary problems the term with Ss in basic differential eq. vanishes, the effect of
the pore volume compressibility and the water compressibility has very small
domain to be used. It is for groundwater flow with free surface only if the water
depth H of aquifer overtops 1000 m. On the other hand simulation models ignoring
the kinematic boundary conditions in (II.8) open question on theirs reliability
regardless  the specific storage effect consideration.

III.  Boundary problem formulation in the models INKANS and SKOKY.
Certainly it is possible to  solve correctly the above problems and to build up
corresponding simulation models on base of the finite element, finite differences as
well as the boundary elements methods. Nevertheles, the next treatment introduces
some information on building the model system of desired properties independently
on the standard methods above mentioned.

      The three-dimensional numerical simulation models of seepage flow INKANS
and SKOKY are based on the mathematical model, consisting of equations

      grad P +q/k = 0,                                                                                             (III.1)

      div q = 0                                                                                                         (III.2)

for the pressure function (potencial) P = z + p/g + const and three components of the
velocity vector q, where p is the hydrodynamic pressure and z is the vertical space
variable (in direction of the gravitational acceleration g). Model is completed with
correctly stated boundary conditions including that for free surface. To avoid an
uncertainity in computational accuracy the requirement to have a well posed
boundary problem  has been satisfied always for the both models.

      Comprehensive formal mathematical decription of solution of the formulated
boundary problem by means of the hydrodynamic theory of  boundaries is presented
in [2], [3] and [4]. Therefore only some methodical aspects and consequences of the
solution are treated here. This solution is closely and directly connected with the
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solution of the problem of unknown moving boundary,  which is in our case the free
surface z = h(x,y,t).

      The key to solution of both problems is the possibility to transform each three-
dimensional boundary problem for (III.1), (III.2) over the whole domain below the
free surface h(x,z,t)  into a two-dimensional one for this boundary. Kosorin   in [4]
demonstrated   the  possibility  and  process  of  this  transformation,  including  its
hydrodynamic (physical) interpretation. The first step of the transformation yields
the 3-D velocity field

      q(u,w,v) = F(H, ht, hx, hy, hxt, hyt ,hxx, hyy.,z)                                                (III.3)

in form of the Taylor′s series for velocity  components u,v,w in the direction of y
between h(x,y,t) and impermeable boundary h0(x,y). Eq. (III.3) in actual explicit
form has been derived  in [4]  using the concept of  inner and outer partial
derivatives on material boundary of flow. To complete  the simulation numerical
model it is sufficient  to operate with the equation of mass conservation for
horizontal streams Φ,Ψ,  the saturated depth of the porous medium H = h-h0 and  the
porosity m and to get eq.
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which results from  integration of the eq. (III.2) according to z  between h
0
 and h.

Equation (III.4), after elimination of the horizontal  velocity components  u and w,
can  be transformed  by  mean of  (III.3) into a form  of the partial  differential
equation of the N-1 order for the free surface h(x,y,t), N>1.

      The next important yield of the hydrodynamic theory of boundaries are so-called
“ jump relations” . Seepage velocity field in layered porous environment is
discontinual, i.e. going through layer interface it overcoms a jump. Three jump
relations between velocity components in front of and behind the interface follow
from (III.1) and (III.2) using the formal relations among inner and outer derivatives
of potential P on interfaces, see (Kosorin 1993). The jump relations are important
for the model concept of SKOKY as well as for the  numerical representation of eq.
(III.3) in model INKANS.

      Model INKANS is based on the numeric integration of system (III.3), (III.4) for
3-D flow with free surface.  Numeric integration applies the method of mean values,
by means of which the system (III.3), (III.4) has been transformed in a system of
ordinary differential equations of the 1-st order each of them related to one element
of domain.This system was integrated by the method of the predictor-corrector type
of the 2nd order with variable time step.

Model INKANS was applied for simulation of the 3-D seepage velocity field in
estimating the impact of the hydropower project "$#&%	')(+*�,	-�,.,	/.0�12,	3	/	4�56#87:9)1;,	<=7:>	9
Danube Island Zitny ostrov, influenced by the interaction with the river Danube and
with the  channel network of the concerned area, see Figs. [4].
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The concept of discontinual velocity field and above mentioned jump relations
are base of the model SKOKY algoritm.  In one  element of model domain the
permeability  is supposed to be constant. The velocity distribution is assumed to has
linear and the pressure function P quadratic distribution in the same element. Using
this by means of chosen approximation function in the system (1) and (2) one
obtains the first part of linear equation of the model. The second part is given by the
velocity jump relation valid on the interfaces among elements. The final part of
equations arises from the boundary conditions. Therefore the result scheme is
implicit.

     The horizontal discretization of the   model domain is rectangular with
nonhomogeneous size of rectangles. Interfaces of layers in vertical discretization
can be nonparallel. The discontinual velocity concept and the elastic discretization
of the model domain allow to apply this model for the groundwater dynamics
simulation in complex domains with singularities of various kind. Some of them are
seen in Figs. 1, 2, 3.

FIG. 1 Asymetric groundwater-surface water interaction along  partly silted channel bed. Simulation
by model SKOKY
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FIG. 2  By-passing a sealing wall below dike. The preferential ways and the  boil effects. Velocity
field. Model SKOKY

FIG. 3  Groundwater flow around navigation lock chamber with left wall gapped; leakage effect;
velocity field. Model SKOKY
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IV. Conclusion. The analysis in chapter 2 implies that  the effect of the pore
volume compressibility and the water compressibility has very small domain to be
used. For the groundwater flow with free surface it should be only if the water depth
H of aquifer  overtops 1000 m. On the other hand, if the simulation model ignores
the kinematic boundary conditioin in (II.8), then it open question on its reliability
regardless of the specific storage effect consideration.

     The algorithm of the model system INKANS  and  SKOKY solves the problem
of free boundary utilising a possibility to transform  the given  boundary problem
from the originally N-dimensional  domain  into problem,  defined  upon  its N-1
dimensional boundaries. The crucial fact allowing  this transformation is, that
knowledge of  the shape and motion of the free surface of seepage flow is sufficient
to describe the velocity field below this surface. The next important property is  the
possibility  to consider the discontinual velocity field and to use the obtained
velocity jump relations.

      Model INKANS has been applied to simulate the influence of the Gabcikovo
reservoir filling on the groundwater dynamics of the  1450 km2 Zitny ostrov aquifer.
Simulated movement of the free water surface shows very good accordance with
field observations, see [4].

      Model SKOKY can be used as solitary as well as submodel of INKANS for
local scale simulations. Its recent applications on the groundwater dynamics in
domains with flow singularities including leakage, preferential ways, boils and other
effects show real possibility to utilize it for special tasks, e.g. for the localization of
gaps in underground structures or preferential ways in leve‘e and dam body.
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