
Proceedings of ALGORITMY 2000
Conference on Scienti�c Computing, pp. 174{187

AN ADAPTIVE FINITE VOLUME METHOD IN PROCESSING OF

COLOR IMAGES

ZUZANA KRIV�A� AND KAROL MIKULAy

Abstract. We study, from a computational point of view, a model for processing of RGB images

based on a regularized (in the sense of Catt�e, Lions, Morel and Coll) Perona-Malik nonlinear image

selective smoothing equation. The model is represented by a system of nonlinear partial di�erential

equations with a common di�usion coe�cient given by a synchronization of the information coming

from all color channels. For the numerical solution we adjust a �nite volume computational method

given in [7] and propose a coarsening strategy to reduce a number of unknowns in the linear system

to be solved at each discrete scale step of the method.

Key words. image processing, RGB image, nonlinear partial di�erential equations, numerical

solution, �nite volume method, adaptivity, grid coarsening

AMS subject classi�cations. 35K55, 65P05

1. Introduction. A RGB image can be viewed as a composition of three grey-
scale images representing level of intensity for red, green and blue colors. Any of these
scalar images can be modelled by a real function u0i (x); i = 1; 2; 3, de�ned in some
rectangular subdomain
 � IRd (in practice d = 2 or 3). Applying an evolutionary
partial di�erential equation (PDE) to the initial image u0i (x) is known as the image

multiscale analysis ([1], [3]). It associates with the initial image u0i (x) = ui(0; x) a
family of \simpli�ed" images ui(t; x), a solution of PDE, depending on an abstract
parameter t > 0 called scale.

In this paper, we consider a Perona-Malik type ([10]) system of equations, regu-
larized in the sense of Catt�e, Lions, Morel and Coll ([5]), which we adapt to a RGB
image. In our model we will not apply Perona-Malik-like equation to each channel
independently (which would be the most simple possibility), but we synchronize the
di�usion in each channel by computing common di�ussion coe�cient depending on an
information coming from all three colors (see also [13], [12] dealing with similar tech-
niques in a vector valued di�usion and a color image processing). Thus, we consider
the following system of nonlinear partial di�erential equations

@tui �r:(drui) = 0; i = 1; 2; 3(1.1)

in QT � I �
, where I = [0; T] is a scaling interval and

d = g(

3X
i=1

jrG� � uij);(1.2)

together with initial and zero Neumann boundary conditions for each channel. Let g
be a smooth nonincreasing positive function with g(0) = 1 tending to zero at in�nity,
G� 2 C1(IRd) be a smoothing kernel with

R
IRd G�(x)dx = 1 and let every initial

function u0i 2 L2(
); i = 1; 2; 3. In the convolution term the kernel is applied to a
periodic extension of the image ui from
 to IRd.

�Department of Mathematics, STU Bratislava, Slovakia, e-mail: kriva@vox.svf.stuba.sk
yDepartment of Mathematics, STU Bratislava, Slovakia, e-mail: mikula@vox.svf.stuba.sk

174

ADAPTIVE FVM IN PROCESSING OF COLOR IMAGES 175

The basic idea of Perona and Malik involves a controlling the di�usion (smooth-
ing) of the image with help of a di�usion coe�cient in the nonlinear parabolic equation
by means of its dependence on ru which is, in a sense, an edge indicator. Catt�e, Li-
ons, Morel and Coll considered rG� � u, the Gaussian gradient, for decision where
there is non-spurious / spurious(noisy) edge.

In the case of (1.1)-(1.2), if a non-spurious edge is present in all three channels, g
returns a smaller value than in the case when the channels are processed indepedently,
and thus the edge is better preserved. If a noise is present in only one of the channels,
the model works in the same way as for the greyscale image. If a noise is present in
all three channels at the same time, smoothing can be slower at the beginning, but
with the increasing scale, the di�erence diminishes.

For the numerical solution of (1.1)-(1.2) we adjust a technique for a greyscale
image suggested and analysed in [7]. It is based on a semi-implicit discretization in
scale and on the so called �nite volume method in space. Recently, the �nite volume
method (FVM) has been widely used in computational sciences and engineering since
it is based on physical principles as conservation laws, it is local and easy to implement.
Moreover, in the FVM the discrete approximations of a solution of partial di�erential
equation are considered to be piecewise constant in control volumes (cells) which
in the image processing corresponds to pixel structure of a discrete image. From
conceptional point of view such approach seems to be the most natural for the image

processing.

Since with an increasing scale a solution tends to be more
at in large regions
of the image, we can improve e�ciency of the method using adaptivity. It is not
necessary to consider the same �ne resolution in the whole spatial domain. This
access reduces the computational e�ort, because a coarsening of the computational
grid reduces the number of unknowns in the linear systems to be solved at the discrete
scale steps of the method. Since all the information about the image is contained in
the initial grid and there is no spatial movement of the edges, no re�nement is needed
and we work just with grids, elements of which are obtained by merging of pixels. This
process is called coarsening in the numerical methods for solving PDEs. In this paper,
we present coarsening strategy for rectangular grids and join such strategy with the
�nite volume method for (1.1)-(1.2). For the �nite element method such approach has
been suggested for image processing applications in [4]. The method has been based
on triangular grids generated by bisection which are successively coarsened during
the di�usion process. The approach given in [4] has been adjusted for bilinear �nite
elements by Preusser and Rumpf in [11]. They also improve storage requirements of
the method by procedural handling of adaptive quadtrees bene�ting from a general
and e�cient multilevel data post processing methodology discussed in [8],[9].

In Section 2 we describe strategy for creating the adaptive grid. In Section 3 we
present the �nite volume method on such grid and in Section 4 we discuss computed
numerical experiments.

2. Creating of the adaptive grid. The initial image is given as a set of discrete
grey (or RGB) values on cells (�nite volumes) of a uniform grid. Every element of
such a grid corresponds to one unknown in a resulting linear system. To decrease
the number of unknowns, we can decrease number of elements: at the beginning
and especially with the increasing scale, we can merge cells using some coarsening
criterion and instead on the regular grid, we can work on the irregular adaptive
structure. For its generation we chose an approach based on quadtrees, which are the
most convenient way to produce graded meshes (it means,in our case, that we have

176 Z. KRIV�A AND K. MIKULA

small elements, where the image information changes (near the edges), and large ones,
where it is of a constant mean). Moreover, the quadtree itself may be computed in
integer arithmetic. A quadtree is a recursive partition of a region of the plane into
axis-aligned squares. One square, the root, covers the entire region. By splitting it
with horizontal and vertical line segments through its center, a square can be divided
into four child squares-quadrants. Let the quadtree square be called a leaf square,
if it is not subdivided into children. Then the image is represented by the leaves of
the quadtree. The criterion, ruling the subdivision of the quadrants, depends on an
intensity di�erence of pixels contained in a given square. If it is smaller than a given
tolerance ", we will continue in the subdivision, otherwise we will stop it. To simplify
creating the matrix of the linear system, we require ful�lling of the balance condition:
no quadtree leaf is adjacent to another leaf of more than twice its size.

The process of the division of quadrants can be formally written with the help
of a tree (Figure 1). Various linearized descriptions with low memory requirements
are used in practice. Here we use a representation based on a preorder type (or
depth-�rst) traversing of the tree, resulting in two lists: binary list L1 encoding the
structure, and a list of image values L2.

Fig. 1. The image given on the right is represented by a quadtree (not balanced) on the left.

The tolerance " is set to 2. L1 and L2 are obtained by Algorithms 1 and 2. In L1, the value 1 means

an inner node and 0 indicates the leaf. Zeroes for the trivial quadrants of the size 1 are omitted

(see Algorithm 1). The order of examining the quadrants is shown on the right (Q1,Q2,Q3,Q4).

In Algorithm 3, both L1 and L2 are 2-dimensional boolean �elds , where an information about the

status of a quadtree region (leaf-blank triangle/inner node-full triangle) is stored in its centre.

To illustrate this approach we introduce two simpli�ed algorithms for creating
and traversing the quadtree. The procedures needed to obtain a region are presented
later.

Algorithm 1. Algorithm 2.

CONSTRUCT(root); l1=beginning of L1;

procedure CONSTRUCT(region) l2=beginning of L2;

begin TRAVERSE(root)

if size_of_region=1 procedure TRAVERSE(region)

{write(pixel_value) to L2; begin

return;} if size_of_region=1

if criterion is not fulfilled {value=*l2; l2=l2+1;

{write('1') to L1; return};

for 4 children of the region if (*l1)=1

ADAPTIVE FVM IN PROCESSING OF COLOR IMAGES 177

CONSTRUCT(child)} for 4 children of the region

else {l1=l1+1; TRAVERSE(child)};

{write ('0') to L1; else

write(region_value) to L2; {value=*l2;

return}; l1=l1+1;l2=l2+1; return;}

end; end;

When information about neighbors is needed, this approach is known to be un-
suitable. In our problem, this information is required during the creation the quadtree
(which must be balanced i.e. for each region we must take into account the size of its
neighbor) as well as during the traversion when the di�usion coe�cient is calculated.
To avoid these problems, we will modify the basic approach in two ways: to achieve
a better correspondence between a quadtreee region in L2 and its status in L1, we
will add to both lists some auxiliary positions, and, to maintain the balancedness, we
change construction of L1.

Let us take an image of an arbitrary size. To initialize L2, we will embed it into
a 2N � 2N �eld (the additional positions are �lled with some constant), for which
we construct a quadtree encoded in the �eld L1. The information, saying if some
quadrant in L2 is subdivided (1) or not (0), is stored in L1 in such a way, that we are
able to �nd it according to the position of the quadrant in L2. Vice versa, according
to the position of an item in L1, we know, if it shows a status of some quadrant
in L2 and which. In the worst case, when no merging is possible, to encode the

quadtree corresponding to the 2N � 2N image, we need 4N�1
3

positions. The rest of
the positions in L1 is auxiliary. L1 is the �eld of the size (2N+1)�(2N+1) and let us
suppose, that it has been already constructed. During the quadtree traversion, it will
be recursively subdivided according to the value in the centre of a (2k +1)� (2k +1)
region (unlike L2, quadrants of this �eld are overlapping). According to the position
of a (2k+1)� (2k+1) quadrant in L1, we can calculate the position of corresponding
2k � 2k quadrant in L2 and we can access the image value. Also the neighborhood
information can be obtained. For a balanced quadtree, we need at most two tests in
L1 to �nd out the size and the position of the neighbor cell. If we embed the original
image into (2N + 1) � (2N + 1) �eld instead of 2N � 2N one, position of L1 and L2
quadrants directly corresponds - the positions of left lower corners of corresponding
regions in L1 and L2 are the same. Such a situation is depicted in Figure 2 and used
in Algorithm 3.

The last step is to set the indicator �eld L1. We do not use the top-bottom ap-
proach of Algorithm 1, but the bottom-up way of merging the regions. New intensity
value for merged cells is set to pixels' average. We start on the lowest (pixel) level of
the structure with L1 cleared and try to merge the 2� 2 cells. In this approach, the
lowest left corner of a 2� 2 region in L2 directly coresponds to the lowest left corner
of a 3� 3 stencil in L1 (see Figure 2). If merging is not possible, the central position
of the 3� 3 stencil in indicator �eld is set to 1 to "mark" the tree node as inner and
is sent to the corner positions of the stencil to maintain the balance condition. Then
we continue on a higher level and try to merge 4 � 4 cells (e.g. quadruples of 2 � 2
merged regions), (2k + 1)� (2k + 1) etc.

To maintain the balance condition we use the fact, that corners on a lower level
become middle points of sides of the L1 stencils on a higher level. It enables us to
control the merging also according to the size of neighboring cells: if some (2k +1)�
(2k + 1) indicator stencil on a higher level has "1" in some middle side position, the

178 Z. KRIV�A AND K. MIKULA

Fig. 2. The mutual position of image values in L2 and indicators in L1 in a stencil on the

lowest level. The picture shows the case, when both �elds are of the same size.

quadruple is not merged, even if its cells are within the tolerance ". Otherwise the
ratio of neighboring cells' size would be 1:4 or higher.

During the recursive process, the testing just the intensity di�erence of the cells in
an inspected quadruple could cause cumulating of errors and in special cases resulting
di�erence could be greater than ". Such situation is depicted on the right of Figure 1 in
quadrantQ2. To avoid it, the merging criterion for testing a quadruple is changed. For
every merged cell we remember, except for a new value, also minimum and maximum
of all subcells and a modi�ed coarsening criterion says: we can merge four cells when

the values in the corresponding center and middle positions in L1 are zeroes, and

di�erence of minimum and maximum for a given quadruple is bellow a prescribed

threshold ". Working with an RGB image, we require the coarseing criterion for the
inspected cells to be ful�lled in all three channels. In such a case we will work with
one list L1 and three lists L2.

The following algorithm shows traversing of the quadtree provided that L1 and L2
have been already created and organized as described in the previous. The procedure
�rst child splits the inspected region and sets the new current region to the �rst
child. The procedure next child shifts to the following child: next child from the last
child returns NILL. If during the traversion the leaf element is reached, its di�usion
coe�cient is calculated by the procedure coe�.

Algorithm 3.

TRAVERSE(root);

procedure TRAVERSE(region)

begin

if size_of_region=1

{coeff(L2[position_of_region]);

return;}

if L1[center_of_region]=1

{for(child=first_child(region);child !=NIll;child=next_child(child)}

TRAVERSE(child);return}

else {coeff(L2[position_of_region]

return};

end;

It can be easily seen that having a 2N � 2N image, the creation of the structure

(i.e. setting L1) needs
4N�1
3

comparisons of quadruples (or less, because if it is not

ADAPTIVE FVM IN PROCESSING OF COLOR IMAGES 179

possible to merge on a lower level, it is not possible on a higher level either). Any
quadtree has m = 1 + 3k leaf elements, for some k 2 N , hanging in quadruples on k
parent (inner) nodes. If c1 is the cost of a procedure for getting the �rst child, c2 is
the cost of shifting to the next child and return to the parent element, then, having
in mind the tree representation of the quadtree, it can be easily seen that the cost of
traversing is about m

3
(c1 + 4c2). Let the quadtree is built upon an image given on a

regular grid with M elements, and c0 be the cost of the access to the next element

in the regular grid. Then, for r < (c1+4c2)

3c0
, traversion of the quadtree is slower than

going through the regular grid.
After creating the quadtree structure (by setting L1), we calculate the di�usion

coe�cients by its recursive traversing. In such a way we create a system of linear
equations, which is then solved using an iterative method with low memory require-
ments.

3. Finite volume scheme. Let �h be a mesh of
 with cells p of measure m(p)
(we assume rectangular cells here). For every cell p we consider set of neighbours
N(p) consisting of all cells q 2 �h for which common interface of p and q, denoted by
epq , is of non-zero measure m(epq).

In the numerical scheme (3.7), we will provide computations in the series of dis-
crete scale steps starting with u0ip , p 2 �h, corresponding to given intensities on the
pixel structure of the initial discrete image. In the FVM, in every subsequent discrete
scale step we get again a piecewise constant approximation unip , p 2 �h, n = 1; 2; : : : of
the continuous solution. Convergence of such an approximations to a weak solution
of (1.1)-(1.2) for a greyscale image, i.e. with i=1, provided the length of the discrete
scale step and the size of the pixel tends to zero, is given in [7]. In [7], it is assumed
that for every p, there exists a representative point xp 2 p, such that for every pair

p; q; q 2 N(p), the vector
xq�xp
jxq�xpj

is equal to unit vector npq which is normal to epq and

oriented from p to q. (Let us note, that this assumption is not ful�lled for adaptive
grids given by the coarsening algorithm). In [7] xpq is the point of epq intersecting
the segment xpxq and following coe�cients are de�ned:

Tpq :=
m(epq)

jxq � xpj
(3.3)

g�;npq := g(j

3X
i=1

rG� � ~ui (xpq) j)(3.4)

where ~ui is a periodic extension of a discrete color channel computed in n-th scale
step.

To give the �nite volume scheme for the adaptive grid, we modify the meaning of
xpq in (3.4) and de�nition (3.3) of Tpq. Let in the sequel xpq be the middle point of the
common boundary of two neighboring cells (with possibly non-equal measures). The
de�nition of g�;npq will then remain the same. In the de�nition of Tpq in (3.3), the value
jxp � xq j represents the distance used for an approximation of the normal derivative
uq�up
jxq�xpj

. We can adjust this parameter in several ways. Here, we will introduce two

ways of calculating Tpq .

Scheme 1. We can set jxp � xq j to average size of two neighboring cells. Since our
grids are balanced we put

Tpq := 1 if two inspected adjacent cells p; q are of equal size,

180 Z. KRIV�A AND K. MIKULA

Tpq :=
2

3
otherwise.(3.5)

Scheme 2. The second possibility which we consider is given by

Tpq = minflp; lqg(3.6)

where lp and lq are lengths of sides of two adjacent cells p; q (of possibly non-equal
measure). It is like if we assume exchange of intensity between neighboring cells just
in a strip of unit thickness along a boundary of a cell. This adjustment can be used
for any grid, but in a case of a balanced grid Tpq is always equal to 1 or 1

2
.

The �nite volume scheme on the adaptive grid for (1.1)-(1.2) is then written
as follows:

Let 0 = t0 � t1 � ::: � tNmax
= T denote the scale discretization steps with tn =

tn�1 + k, where k is a discrete scale step. For i = 1; 2; 3 and n = 0; :::; Nmax � 1 we

look for un+1ip
, p 2 �h, satisfying the system of linear equations

0
@m (p)

k
+
X

q2N(p)

g�;npq Tpq

1
Aun+1ip

�
X

q2N(p)

g�;npq Tpqu
n+1
iq

=
m (p)

k
unip :(3.7)

This scheme is linear semi-implicit in scale, since a scale derivative is replace by
backward di�erence and nonlinear terms of equation (1.1) are treated from the pre-
vious scale step while the linear terms are discretized on the current scale level. In
every discrete scale step, the scheme gives linear systems which are symmetric and
strictly diagonally dominant (with positive diagonal and negative numbers out of the
diagonal) which guarantees existence of its unique solution and for which also L1
stability can be easy to prove. Moreover, it can be shown that for both schemes the
mean value of the intensity is preserved.

In the case of a uniform square grid Tpq is equal to 1 and for a unit uniform
grid with elements of unit size both schemes give the same result and represent the
nonadaptive version of the algorithm. Nonadaptive versions for grids with cells of size
bigger than 1 di�er. If the coarsening process creates a uniform grid with cells of size
l, the Scheme 2 works like Scheme 1, but with the scale step enlarged l times and thus
di�usion is faster. Figure 3 demonstrates, that this is true also with adaptive grids
with elements of arbitrary size.

In the scheme (3.7) we must compute the term (3.4). To compute the correspond-
ing vector we can use the following property of the convolution

@(G� � ~u)

@x
(xpq) = (

@G�

@x
� ~u) (xpq)

and we get

rG� � ~ui (xpq) =
X
r

unir

Z
r

�
@G�

@x
(xpq � s)ds;

@G�

@y
(xpq � s)ds

�
:(3.8)

Now the sum is restricted to the control volumes r inside B� (xpq), the ball centered
at xpq with radius �: The ball B� is given either by a support of the compactly sup-
ported smoothing kernel or it can represent a "numerical support" (a domain in which
values of a function are above some treshold given e.g. by a computer precision) of

ADAPTIVE FVM IN PROCESSING OF COLOR IMAGES 181

Fig. 3. a) the original noisy image b) Scheme 1:grid after 20 steps c) Scheme 2: grid after 20

steps d) 20 steps of nonadaptive algorithm e) 20 steps of algorithm given by Scheme 1, f)20 steps

of algorithm given by Scheme 2

the Gauss function . In any case, just a �nite sum in (3.8) is evaluated and coe�-
cients of this sum, namely

R
r
rG� (xpq � s) ds can be precomputed in advance using

a computer algebra system, e.g. Mathematica. Moreover, we can see that computing
di�usion coe�cients is signi�cantly faster in the synchronized model, because they
are computed only once. This is particularly desirable, when we work with � covering
several pixels, because it considerably reduces number of multiplication operations.

4. Numerical experiments. In this section we present experiments with some
real as well as arti�cial images perturbed by various types of noise. In simulations,
we use the function

g(s) =
1

1 +Ks2

with K > 0 and the convolution is realized with the kernel

G�(x) =
1

Z
e

jxj
2

jxj2��2 ;

where the constant Z is chosen so that G� has unit mass. In order to compute the
di�usion coe�cient g�;npq we use the concept given in (3.8). In all numerical experi-
ments we have chosen both the size of pixel and the scale step to be 1. Figures and
graphs document results of multiscale analysis (iterative �ltering) as well as adaptive

182 Z. KRIV�A AND K. MIKULA

computational grids. All experiments were done on PENTIUM II(400 MHz) with
linux operating system.

Example 1. To every position of a double-valued image ~u0i of the size 256� 256
with intensity di�erence 150 we applied a noise by a transformation: if is a random
function generating values in [0; 100], then for every pixel x and for i = 1; 2; 3

u0i (x) =MIN(255;MAX(0; ~u0i (x) � 50 +):

The Figure 4 shows the original image perturbed by noise, the result of smoothing
and the resulting mesh. The Figure 6 shows the decrease of number of unknowns
and time needed for particular phases of the algorithm (building the quadtree by
setting the indicator �eld, calculating the di�usion coe�cients and solving the linear
system) in time evolution for " = 0:03, � = 0:5, and K = 10. The initial image
contains 65536 pixels. The total computational time for this example after 7 scale
steps is 2.42 seconds for algorithm using Scheme 2. The Figure 5 shows the work of
nonadaptive algorithm after 7, 10 and 12 scale steps with achieved times 6.22, 8.93
and 10.7 seconds. In this academic example we could choose " considerably higher
and thus achieve better time, e.g. for " = 0:3 a comparable result is achieved after 3
time steps in 0.35 seconds. On the contrary, if we choose " = 0:004, what corresponds
to a di�erence of one pixel, the improvement is much smaller, because such is also the
reduction of elements. The times achieved by the adaptive algorithm using Scheme 1
after 7, 10 and 12 scale steps were 5.7, 6.74 and 7.23 seconds , using Scheme 2 5.69,
6.78 and 8.495 seconds. Resulting images in both cases were similar to Figure 5.

Fig. 4. The initial noisy image, result of smoothing and an adaptive grid (Example 1)

Example 2. The example 2 (Figure 7) works with the image size 512 � 512
with initial number of pixels 262144. The original double-valued image with intensity
di�erence 150 was perturbed by 10% salt and pepper noise. For " = 0:025, � = 0:5,
and K = 10 we need 10 scale steps of adaptive algorithm using Scheme 2 (Figure 6)
with time 9.645 seconds , but 15 steps of nonadaptive algorithm (the times are 56.77
seconds for 15 scale steps and 39.065 for 10 scale steps).

Example 3. The experiment documented in Figure 8 was performed on the
RGB image of the size 512� 402 pixels. The picture is a result of scanning and has
a signi�cantly damaged blue channel (top of Figure 9). First, we show the original
image and compare the work of synchronized and unsynchronized smoothing (Figure
8) performing 5 scale steps of nonadaptive algorithm with K = 10 and � = 1:5. The
example demonstrates better preserving of edges in synchronized model. The Figure 9
shows, that with help of red and green channels, which are of much better quality, the

ADAPTIVE FVM IN PROCESSING OF COLOR IMAGES 183

Fig. 5. Result of smoothing by nonadaptive algorithm after 7, 10 and 12 scale steps.

Fig. 6. Times demonstrating work of adaptive algorithm using Scheme 2. In Example 1 the

mean value for coe�s in nonadaptive version is 0.095s and for system 0.77s, in Example 2 coe�s

took 0.37 s and system 1.7s.

synchronized smoothing recovered the blue channel to the form shown in the bottom
of the Figure, on the right.

Example 4. Channels of the RGB image in Figure 10 were independently dis-
turbed by 10% salt and pepper noise. The size of the image is 433� 512 pixels. For
� = 0:5 of the pixel's size, and K = 10 28 steps of the adaptive algorithm required
280.48 seconds. The result is shown on the left in the bottom. For the adaptive
version the image was completed to the size 512� 512 with zero values. For this size,
K = 10; � = 0:5; " = 0:012, and 26 scale steps we needed 108.75 seconds. In the last
step, the initial number of unknowns 262144 was reduced to 34093. The Figure 10
demonstrates also a feature of Scheme 2 mentioned in Section 3 and demonstrated
in the Figure 3: the di�usion for the adaptive algorithm given by Scheme 2 is faster
than di�usion of nonadaptive algorithm.

REFERENCES

[1] L.Alvarez, F.Guichard, P.L.Lions, J.M.Morel, Axioms and Fundamental Equations of Im-

age Processing, Arch. Rat. Mech. Anal. 123 (1993) pp. 200-257

184 Z. KRIV�A AND K. MIKULA

Fig. 7. The initial image, result of smoothing and an adaptive grid (Example 2)

[2] L.Alvarez, P.L.Lions, J.M.Morel, Image selective smoothing and edge detection by nonlinear

di�usion II, SIAM J. Numer. Anal. 29 (1992) pp. 845-866

[3] L.Alvarez, J.M.Morel, Formalization and computational aspects of image analysis, Acta

Numerica (1994) pp. 1-59

[4] E.B�ansch, K.Mikula, A coarsening �nite element strategy in image selective smoothing, Com-

puting and Visualization in Science, Vol.1, No.1 (1997) pp. 53-61

[5] F.Catt�e, P.L.Lions, J.M.Morel, T.Coll, Image selective smoothing and edge detection by

nonlinear di�usion, SIAM J.Numer.Anal. 29 (1992) pp. 182-193

[6] Z.Kriv�a, K.Mikula, An adaptive �nite volume scheme for solving nonlinear di�usion equa-

tions in image processing, submitted

[7] K.Mikula, N.Ramarosy, Semi-implicit �nite volume scheme for solving nonlinear di�usion

equations in image processing, Numerische Mathematik, to appear

[8] M.Ohlberger, M.Rumpf, Hierarchical and adaptive visualization on nested grids, Computing

59(4) (1997) pp. 269-285

[9] M.Ohlberger, M.Rumpf, Adaptive projection operators in multiresolutional scienti�c visual-

ization, IEEE Transactions on Visualization and Computer Graphics, 4(4) (1998)

[10] P.Perona, J.Malik, Scale space and edge detection using anisotropic di�usion, Proc. IEEE

Computer Society Workshop on Computer Vision (1987)

[11] T. Preusser,M. Rumpf, An Adaptive Finite Element Method for Large Scale Image Process-

ing, Proceedings of ScaleSpace'99 (1999) pp. 223-234

[12] J.Weickert, Coherence-enhancing di�usion of colour images, Image and Vision Computing

17 (1999) pp. 201-212

[13] R.Whitacker, G.Gerig, Vector-valued di�usion, in B.M.t.M.Romemy(Ed): Geometry driven

di�usion in computer vision, Kluwer(1994)

ADAPTIVE FVM IN PROCESSING OF COLOR IMAGES 185

Fig. 8. Example 3. The original image (in the top), result of 5 steps of the nonadaptive

algorithm with synchronized smoothing (in the middle) and 5 steps of the nonadaptive algorithm

with unsynchronized smoothing (in the bottom).

186 Z. KRIV�A AND K. MIKULA

Fig. 9. In the top: red, green, and blue channels before smoothing (from left to the right).

In the bottom: red, green, and blue channels (from left to the right)after 8 steps of synchronized

smoothing by adaptive algorithm. In the middle: composition of smoothed channels.

ADAPTIVE FVM IN PROCESSING OF COLOR IMAGES 187

Fig. 10. In the top from left to right: the original noisy image and image obtained by the

adaptive smoothing. In the bottom from left to right: image obtained by the nonadaptive smoothing

and a corresponding grid.

