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SET-VALUED MAPS FOR IMAGE SEGMENTATION

THOMAS LORENZ�

Abstract. In the following we want to develop an approach to image segmentation that com-

bines two properties : no regularity assumption about the contours and keeping close to the graphical

notions. Hence all considered parts of the image are merely regarded as subsets of IRN and corre-

spondingly their deformation is described as a set-valued map which ought to make some error

functional decrease.

The theoretical concept leads to simple algorithms for both the (abstract) continuous segmentation

problem and the (discrete) computer implementation.

Key words. Set-valued maps, di�erential inclusions, reachable set, contour detection, image

segmentation
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1. Introduction. The detection of image segments represents a basic prob-

lem of image processing.

Meanwhile many popular algorithms share the idea of approximations which are

improved in some sense while time is increasing. For example, active contour models

(so-called snakes) describe each contour as a Jordan curve that is deformed for mini-

mizing some energy functional (see e.g. [5],[11]). But then the topology of the detected

image segment is always simply connected. Moreover snakes (in their early form) are

assumed to be twice di�erentiable and consequently edges can only be detected in

some smoothed shape.

Such regularity assumptions are also a common weakness of other segmentation

algorithms. Meanwhile some approaches have overcome these restrictions. These

concepts follow former ideas and apply more abstract mathematical concepts. Level

set methods are a very popular example which has been implemented e�ciently (see

[8], [9]). They use viscosity solutions of (generalized) Hamilton-Jacobi equations.

In the following we want to develop an approach to image segmentation that

avoids both regularity assumptions about the contours and very abstract mathemat-

ical concepts. Instead our aim is to keep close to the graphical notions.

The image segments are regarded as subsets of IRN . For a given compact setK0 of the

image the algorithm ought to detect the set (including K0) which shows the object.

Correspondingly to the idea of improving approximations, the set K0 is "deformed"

while time is increasing. Mathematically speaking, this deformation is described as a

set-valued map K : [0; T [; IRN that maps each time t 2 [0; T [ to a subset of IRN .

For quantifying the "quality" of the approximations K(t) an error functional �

maps each subset of IRN to IR [ f1g. Motivated by the variance of the grey-values

GjM (restricted to a subsetM � IRN with positive Lebesgue measure) we will assume

that � has the form

�(M) =  
�
L
N (M);

Z
M

G dx;

Z
M

G2 dx
�

for allM � IRN; 0 < L
N (M) <1

and that  2 C2(]0;1[�IR� IR) has the support in [0; c]� IR � IR for some c > 0.
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Now the composition � �K : [0; T [! IR is a usual real-valued function and our

aim is to constructK(�) (with K(0) = K0) such that ��K is decreasing until reaching

some "critical set".

For implementing these notions the next steps concern the construction of K(�)

and su�cient conditions for the decrease of � �K(�).

Set-valued maps also provide an answer to the �rst problem : K(t) is the reachable

set #F (t;K0) of a di�erentiable inclusion x0(�) 2 F (x(�); �) starting at K0. In com-

parison with an ordinary di�erential equation the set-valued map F : IRN �IR; IRN

tolerates more than one velocity of propagation.

With respect to the second step we examine the regularity of the above-mentioned

composition. Conditions on F imply the absolute continuity of � � #F (�;K0) and

lead to its (weak) derivative. The sign of the latter provides a su�cient condition to

guarantee the wanted decrease.

Afterwards a solution K(t) is constructed and we present a simple implementation

for computer images based on the same notion.

A �rst idea of applying set-valued maps to image segmentation has already been

sketched brie
y by J. Demongeot and F. Leitner ([4]). They suggest compact set-

valued 
ows for various morphologies evolving in time to an asymptotic shape, which

corresponds to the minimum of a potential function. In connection with image seg-

mentation, snakes are regarded as (set-valued) potential 
ows. However, their survey

is restricted to formal conclusions (without considering regularity, for example).

The following concept has been developed independently and is to avoid mathemat-

ical gaps. A more detailed presentation of these results is submitted to "Computing

and Visualization in Science".

2. Deformation of sets. In this section we outline the basic mathematical

tools (i.e. set-valued maps) and their application to the deformation of sets. This

survey will serve as a basis for the precise formulation and the solution of the seg-

mentation problem.

Set-valued maps represent the result of a trend typical of mathematics : give up

unnecessary restrictions.

Functions have to ful�ll the condition of a unique value (for each element of the do-

main). This uniqueness implies strong restrictions. Thus we want to tolerate more

than one value for each element of the domain. Strictly speaking, this corresponds to

replacing the range by its power set. But this roundabout way does not provide any

advantage at all. Hence we return to the graph for a simple de�nition of set-valued

maps :

Definition 2.1 ([3]). Let X;Y be sets and M � X � Y . A set-valued map

F : X ; Y is de�ned by M according to F (x) := fy 2 Y j (x; y) 2Mg 8 x 2 X.

M is called the graph of F : Graph(F ) := M . F (x) is the image of the value

of F at x 2 X. The domain of F consists of all x 2 X with nonempty image, i.e.

Dom(F ) := fx 2 X jF (x) 6= ;g: F is said to be strict if the value F (x) for each

x 2 X is nonempty, i.e. Dom(F ) = X.

With respect to image segmentation we will restrict ourselves to set-valued maps with

nonempty compact values. Then it is quite easy to extend the de�nition of continuity.
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Definition 2.2. Let X;Y be metric spaces and F : X ; Y be strict with

compact values. K(Y ) denotes the set of all nonempty compact subsets of Y .

dl = dlY is the abbreviation of the Hausdor� metrics on K(Y ).

Then F is called continuous if the corresponding function X ! (K(Y ); dl); x 7! F (x)

is continuous. Moreover F is said to be Lipschitz continuous if this function

X ! (K(Y ); dl) is Lipschitz continuous.

For implementing the deformation of sets mathematically, the graphical notion is

based on the prescription of velocities. Traditionally vector �elds and the correspond-

ing ordinary di�erential equations describe the evolution according to

#v(t;K) := f x(t) j x(�) 2 C1([0; t]; IRN ); x(0) 2 K;

x0(�) = v(x(�); �) 8 � 2 [0; t] g:

for a vector �eld v 2 C0;1(IRN � [0; T [; IRN ) and K � IRN .

The application of this concept often requires additional assumptions about the regu-

larity. The prescription of the normal velocity, for example, is only possible if the unit

normal vector is de�ned adequately. So the boundary has to be su�ciently smooth

and edges are prohibited at all.

These restrictions are unnecessary if we admit more than one velocity at each point

(and at every time). Generally speaking the vector �eld is replaced by a set-valued

map. In addition, tolerating all continuous trajectories with well-de�ned velocities

is more important than insisting on their smoothness. So the condition x(�) 2

C1([0; t]; IRN) is weakened to absolutely continuous functions x(�) 2 AC([0; t]; IRN )

and their weak derivatives x0(�) 2 L1([0; t]; IRN ): This generalization provides useful

advantages concerning the existence and convergence of solutions (see [2], [1]), but we

do not need these details here explicitly.

Definition 2.3 ([2]). Suppose that T 2 ]0;1], t 2 [0; T [, F : IRN � [0; T [; IRN

and K � IRN . The reachable set of F and K at time t is de�ned according to

#F (t;K) := f x(t) j x(�) 2 AC([0; t]; IRN ); x(0) 2 K;

x0(�) 2 F (x(�); �) almost everywhere in [0; t] g:

3. Segmentation problem.

For a given image segment K0 2 K(IRN ) we want to detect

the supersetM that shows the corresponding object in the image.

This section is dedicated to the mathematically precise formula-

tion of this rather heuristic problem.

Every grey-valued image determines a function G : IRN ! IR

that maps each point (of the N -dimensional image) to the grey-

value there. The fundamental idea is based on a set-valued map

K : [0; T [; IRN with K(0) = K0 that is \approximating" the

wanted set M while time is increasing. So K(�) ought to satisfy

the following 4 conditions :

1. K(t) is compact for every t 2 [0; T [ ,

2. K(0) = K0,

3. K(t1) � K(t2) for all 0 � t1 � t2 < T ,

4. K(�) : [0; T [! (K(IRN ); dl) is continuous.

Then K(�) induces the resulting set M in a very simple way : M :=
[

0� t <T

K(t):
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In the previous paragraph we speci�ed a concept for the construction of K(�) :

the reachable set #F (�;K0) of a di�erentiable inclusion x0(�) 2 F (x(�); � ) (a.e.).

Then condition (2) is trivial : #F (0;K0) = K0: Moreover the assumption 0 2 F (x; t)

(for all x 2 IRN ; t 2 [0; T [) guarantees property (3) because graphically speaking, we

can stay at any reached point x 2 #F (t1;K0) by means of a trajectory at speed 0 and

hence #F (t1;K0) � #F (t2;K0) for all 0 � t1 � t2 < T .

Assume that #F (t;K0) is closed for every t 2 [0; T [. Then we still need an additional

condition on F ensuring the boundedness of the reachable sets #F (t;K0). Corre-

sponding to the results of ordinary di�erential equations the linear growth condition

(on the right hand side) excludes the explosion of any trajectory. This condition is

easy to extend to set-valued maps (with B := B1(0) = fy 2 IRN j jyj � 1g) :

Definition 3.1 ([2]). For any T 2]0;1] a set-valued map F : IRN�[0; T [; IRN

has linear growth if there is a constant c > 0 with

F (x; t) � c (1 + jxj+ t) B for all x 2 IRN ; t 2 [0; T [ :

Gronwall's lemma implies immediately the existence of an increasing function R :

[0; T [ ! [0;1[ (depending on K0) with #F (t;K0) � R(t) B for all t 2 [0; T [

and the resulting local boundedness of F (x; t) leads to the local Lipschitz continuity

of #F (�;K0).

Now the next step concerns a criterion of the \quality" of the deformed set.

Mathematically speaking, the \error functional" is a function � : P(IRN )! IR[f1g

of all subsets of IRN . We concentrate on the search for subareas giving a uniform

impression. For example, the variance of GjK measures the oscillation of the grey-

values in K: It motivates the more general assumption that �(�) has the form

�(K) =  
�
L
N (K);

Z
K

G dx;

Z
K

G2 dx
�

for all K � IRN; 0 < L
N (K) <1:

 (�) 2 C2(]0;1[ �IR � IR) is supposed to satisfy supp  � [0; c] � IR � IR with

some c 2 ]0;1[. The latter condition prevents \explosions" of the deformed sets

because LN (K(t)) � c implies �(K(t)) = 0 and hence the composition �(K(�))

cannot decrease any longer by expanding K(t).

These preparations lead to the following segmentation problem (with the de�ni-

tion of \critical" sets given below) :

Given : function of grey-values G 2 BC(IRN ),

error functional � : P(IRN )! IR [ f1g of the form

�(K) =  
�
L
N (K);

Z
K

G dx;

Z
K

G2 dx
�

8 K � IRN; LN (K) 2 ]0;1[.

with  (�) 2 C2(]0;1[�IR2); proj1(supp  ) bounded,

initial set K0 2 K(IR
N ) with LN (K0) > 0.

Wanted F : IRN � [0; T [ ; IRN (T 2 ]0;1]) satisfying

(a) #F (t;K0) is closed for all t 2 [0; T [ ,

(b) 0 2 F (x; t) for all x 2 IRN ; t 2 [0; T [ ;

(c) F has linear growth,

(d) � � #F (�;K0) : [0; T [! IR is nonincreasing,

(e) M :=
S
0�t <T #F (t;K0) is \critical".



SET-VALUED MAPS FOR IMAGE SEGMENTATION 169

4. The absolute continuity of �(#F (�;K0)). Property (d) is of central

interest. Hence we examine the regularity of the composition �(#F (�;K0)) now and

investigate its derivative (if it exists). Then the sign of the latter provides a su�cient

condition for the wanted nonincreasing.

Thanks to  2 C2(]0;1[�IR2), the chain rule allows us to concentrate on the function

t 7!
R
#F (t;K0)

h(x) dx with h 2 L1loc(IR
N ) (e.g. 1, G, G2).

The evolution along vector �elds has already been investigated in detail :

Theorem 4.1 ([10]). Let K � IRN be a Lebesgue measurable set satisfying the

assumptions of Gauss' theorem and v 2 C1
c (IR

N+1; IRN): Then

lim
t!0

LN (#v(t;K))�LN (K)

t
=

Z
@K

v(x; 0) � �K(x) d!x

with �K(x) abbreviating the exterior unit normal vector of K at the point x 2 @K.

This result is quite similar to the generalization to #F (t;K0) although it cannot be

extended immediately :

Theorem 4.2. Let F : IRN � [0; T [; IRN satisfy

1. F (x; t) is compact, convex, 0 2 F (x; t)� for all x; t,

2. F is continuous,

3. F has linear growth.

Then the Lebesgue measure LN (#F (�;K)) is absolutely continuous for any K2K(IRN )

and its (weak) derivative is

[0; T [ �! IR; t 7�!

Z
@ #F (t;K)

sup (F (x; t) � ~N#F (t;K)(x)) dHN�1x:

In comparison with Theorem 4.1, the unique normal vectors of the smooth boundary

are replaced by the unit elements of the normal cone.

Definition 4.3 ([3]). Let K � X be a subset of a normed vector space X and

x 2 K belong to the closure of K. The so-called (Bouligand) contingent cone TK(x)

is de�ned by TK(x) := f v 2 X j lim infh # 0
dist(x+hv; K)

h
= 0 g ;

the corresponding normal cone NK(x) := f p 2 X� j < p; v >� 0 8 v 2 TK(x) g;

in particular for a Hilbert space X NK(x) = f p 2 X j p � v � 0 8 v 2 TK(x) g:

Moreover, we add an abbreviation for the unit normal vectors :

~NK(x) :=

�
NK(x) \ S

N�1 if NK(x) 6= f0g;

SN�1 if NK(x) = f0g:

Assumption 0 2 F (x; t)� implies that #F (�;K) is even a \strict" expansion, i.e.

#F (t1;K) � #F (t2;K)� for all 0 � t1 < t2 < T:

This property is not useful for image segmentation because graphically speaking the

deformed set needs the opportunity to stop when reaching the wanted contour. Hence

we want to extend the previous result to the condition 0 2 F (x; t)� _ F (x; t) = f0g.

To guarantee that the trajectories can reach only points x =2 K satisfying 0 2 F (x)�,

we assume that F depends only on x and F : IRN
; IRN is Lipschitz continuous.

(Then Gronwall's lemma implies F (x) 6= f0g for any reached point x =2 K.)
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Theorem 4.4. Let the set-valued map F : IRN
; IRN be Lipschitz continuous

and have compact, convex values satisfying 0 2 F (x)� or F (x) = f0g.

Then the Lebesgue integral [0;1[ ! IR; t 7!
R
#F (�;K)

h(x) dx is absolutely

continuous for K 2 K(IRN ); h 2 L1loc(IR
N ).

Its (weak) derivative is
R
@ #F (t;K)

h(x) sup (F (x) � ~N#F (t;K)(x)) dH
N�1x:

With respect to the segmentation problem we obtain the absolute continuity of

�(#F (�;K)) under the assumptions of Theorem 4.4 and its derivative has the form

d

dt
�(#F (t;K0)) =

Z
@ #F (t;K0)

'(x; #F (t;K0)) sup (F (x) � ~N#F (t;K0)(x)) dHN�1x

with the abbreviation '(x;M) :=
P2

k=0 @k+1 j�
LN (M);

R
M

G dy;
R
M

G2 dy

�G(x)k
(for x 2 IRN and M � IRN ; 0 < LN (M) <1).

5. Solution of the segmentation problem. Theorem 4.4 underlies a solu-

tion of the segmentation problem. As an approach for F , we assume F (x) = r(x) B

with a Lipschitz continuous function r : IRN ! [0;1[; i.e. we prescribe only the

speed, not the direction of each velocity. In comparison with morphological operators

this expansion corresponds to a generalized dilation operator with its speed r(�)

depending on the position x at the image (due to the symmetry of B = �B, the

usual dilation operator leads to #"B(t;K) = B"t(K) = fy 2 IRN j dist(y;K) � " tg

with a constant speed parameter " > 0).

The ansatz F (x) = r(x) B and Theorem 4.4 imply that �(#F (�;K)) is nonincreasing

if '(x; #F (t;K0)) � r(x) � 0 for all t 2 [0; T [; x 2 @ #F (t;K0).

So far the assumption G 2 L1(IRN ) \ L2(IRN ) would have su�ced. The main

advantage of G 2 BC(IRN ) is now the continuity of

IRN
� [0; T [ �! IR; (x; t) 7�! '(x; #F (t;K))

if the set-valued map F satis�es the conditions of Theorem 4.2 or 4.4 and if K 2

K(IRN ) has positive LN measure.

As a consequence, whenever '(x;K) < 0 for some x 2 @K, thenK

can be expanded close to x for a short time such that �(#r B(�;K))

is strictly decreasing. This method fails if '(x;K) � 0 for all

x 2 @K. Hence we de�ne a \critical" set :

Definition 5.1. A set K � IRN with 0 < LN (K) < 1 is called critical if

'(x;K) � 0 for all x 2 @K.

The basic idea of the solution is to expand the set wherever ' is negative, i.e.

'(x; #r B(t;K0)) > 0 =) r(x) = 0 for all t 2 [0; T [ and x 2 IRN

(the latter instead of x 2 @ #r B(t;K0) { for the sake of simplicity). Since the radius

function r(�) (of F (�) = r(�)B) ought to depend only on x, it is very di�cult to de�ne

it adequately for any future point of time.

Hence we construct it piecewise with respect to time : For each interval [tn; tn+1]

(n 2 IN) the deformed set Kn at time tn induces a Lipschitz continuous function

rn : IRN ! [0;1[ and thus the deformed sets #rnB(t � tn; Kn) for t 2 [tn; tn+1]

(including Kn+1 := #rnB(tn+1 � tn; Kn)).
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The de�nition of rn(�) is to guarantee �nally for every t 2 [tn; tn+1]

8 x 2 @ #rnB(t� tn; Kn) : rn(x) > 0 =) '(x; #rnB(t� tn; Kn)) < 0: (�)

Hence we construct rn(�) (with some � > 0) satisfying even

8 x 2 IRN : rn(x) > 0 () '(x;Kn) < ��

and choose tn+1 then such that condition (*) is ful�lled until t = tn+1.

After �nitely many steps of this induction, all x 2 @Kn\(
1
�
B) satisfy '(x;Kn) > � 2�:

Then we replace � by a smaller positive value (e.g. �
2
) such that �nally � �! 0.

As a consequence, the continuity properties of ' imply that M :=
S
n2IN Kn is

critical, i.e. '(x;M) � 0 for every x 2 @M .

6. Simple implementation for computer images. In comparison with the

(continuous) segmentation problem, the main di�erence corresponds to discretizing :

The smallest sensible unit of a computer image is one pixel or one voxel respectively.

Furthermore the grey-values within each of these units are constant. Hence we con-

centrate on the decision if a pixel (or a voxel) belongs to the resulting set or not.

Kn denotes the �nite union of pixels representing the deformed

set at the nth step (shown in dark-grey). The expansion to a

neighbouring pixel P � IRN can again be regarded as reachable

sets of a di�erential inclusion. Thus we underlie the same math-

ematical concept as in the previous section and use the criterion

'(x;Kn) < �� with any point x 2 P � (since GjP� is constant).

If no further neighbouring voxel P (shown in light-grey) satis�es this condition

then � is replaced by a smaller positive value until reaching a given positive threshold.

Searching for areas with a uniform impression, we suggest the error functional

�(K) := � V ariance(GjK) + � LN (K)

= �

LN (K)

Z
K

G2 dx � �
�

1
LN (K)

Z
K

G dx
�2

+ � LN (K)

for all K � IRN ; 0 < LN (K) <1; with the parameters � � 0; � > 0.

Here the term � LN (K) allows tolerating small oscillations of grey-values while the

deformed set keeps increasing. Then

'(x;Kn) = �

LN (Kn)
G(x)2 �

2 �
R
Kn

G dy

LN (Kn)2
G(x) �

�
R
Kn

G2 dy

LN (Kn)2
+

2 � (
R
Kn

G dy)2

LN (Kn)3
+ �:

is a quadratic polynomial of G(x) whose coe�cients are calculated merely once for all

neighbouring pixels of Kn.

The resulting set depends mainly on three parameters : initial set K0, quotient
�
�
and

the threshold of � (which represents the precision of calculation). In this connection

the parameter � > 0 is only to scale the real values of the error functional �.
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Fig. 1. MR of right human knee. (Left : Initial set K0. Right : resulting set)

The two �gures show examples of the computer implementation.

First, the bone inside a human knee is detected on MR images with 662 � 654 pixels

and 250 grey levels (�g. 1, � = 1:6; � = 106). Secondly, fractals in �g. 2 demonstrate

the precise detection of boundaries. (This image has 570 � 445 pixels and 242 grey

levels, � = 3:7; � = 107:) Neither of these examples was prepared before applying

the segmentation algorithm (i.e. no previous smoothing).

The computer method has three main advantages : It is very quick because the

criterion applied to each neighbouring pixel is based on a quadratic polynomial of the

grey value. Moreover it does not depend on the dimension of the image. Finally the

extension to image sequences simply increases the dimension by 1 and restricts the

set expansion to all (previous) space directions and the positive time direction.

The concept presented so far is isotropic. However the sequence of checking neigh-

bouring pixels o�ers a simple opportunity of preferring given directions. This even

leads to an anisotropic modi�cation { with the same mathematical background.
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Fig. 2. Fractal sets . (Left : Initial set K0. Right : resulting set)
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