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MATHEMATICAL MODELLING OF A URANIUM MINE

FLOODING.�

DALIBOR FRYDRYCHy AND JI�R�� MARY�SKA, JI�R�� MU�Z�AK, OTTO SEVER�YN, z

Abstract. Mathematical model of unsteady unsaturated porous media 
ow is discussed. A

compact expression of the governing equations is found. It is discretized by Rothe method in time

and by mixed-hybrid �nite element method in space. A sketch of an existence proof for the mixed-

hybrid formulation is given. An iterative scheme for solution of the resulting nonlinear problem is

proposed. An application to the model to modelling of 
ooding deep uranium mines after �nishing

the mining activities is considered.
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1. Introduction. The enormous contamination of the underground water in the

Cenoman formation near Str�a�z pod Ralskem due to uranium exploitation is one of the

most serious environmental problems in the Czech Republic. Since 1963 uranium ore

was mined there and later, since 1969 uranium salts were leached. Both the methods

strongly di�er in their hydrogeological demands. Whereas for the classical mines the

underground waters should be pumped out under the level of the mining tunnels, the

leaching process needs as high level of the Cenoman underground waters as possible

in order to simplify the procedure, but, at the same time, protecting the sources of

potable water which are in the same region. The co-existence of both the mining

techniques at the same place thus naturally induced a complicated hydrogeological

situation in the region. The classical mining was stopped in 1993 and the mines

are being �lled with concrete. The leaching is beeing �nished just now and this

technique will be replaced by the remediation which will take approximately 30 years.

Nowadays, the 
ooding of the mines will be started so that the escape of the pollutants

from the leaching �elds would be minimized. It will be controlled based on the results

of the transport modelling. For the simulation purposes a model of the nonstationary


ow based on the mixed and hybrid �nite elements was developed which keeps the

balances on the inner faces of the discretized region. Therefore, it is compatible with

the transport model based on �nite volume method.

Let us assume a porous-media 
ow in a neighbourhood of some resource of con-

taminated water and denote the domain of interest by 
. A part of 
 is fully saturated

and the rest is unsaturated.

Consider now the �xed domain 
, where the unsaturated and saturated zones


1, 
2 are separated by a contact surface ��. This contact surface is de�ned by the

distribution of saturation S 2 hSmin; 1i, Smin > 0. The unsteady �ltration 
ow is
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governed by continuity equation

@�(S; p̂)

@t
+r � u = q(1)

in both 
1 and 
2. Here u is �ltration velocity and the accumulation term is assumed

in the form:

@�(S; p̂)

@t
= �"(p̂)

@p̂

@t
+ "(S)

@S

@t
(2)

Its �rst part expresses the accumulation capacity of the porous medium depen-

dency on pressure (it can be neglected for small water level variations) and the second

term expresses the accumulation changes in the non-saturated zone. Here " denotes

the speci�c water capacity which is a soil water content di�erentiated by the pressure.

The �ltration velocity now depends also on capillarity e�ects and saturation gradient

according to modi�ed Darcy's law

u = � kr(S)k

�
1

%g
rp̂+ �c

rS

S
+rz

�
;(3)

where p̂ is pressure, k is the permeability tensor and kr(S) is relative hydraulic con-

ductivity expressing the in
uence of saturation on the permeability of porous media.

The function kr depending on the saturation S is increasing with values in hkmin; 1i,

kmin > 0. Usually, the functions of type S� are used in de�nition of kr. The coe�cient

�c characterizes the capillarity forces.

On the boundary � = @
 several types of conditions can be prescribed: the

nonpermeable part of boundary �N with u �n = 0, the open water level (for example,

the pond) is modelled by Dirichlet boundary condition p̂ = 0 on �D, on the terrain

level �T on has rain dotation u � n = �uR and on the vertical boundaries �N 0 the

general Newton condition u � n = �(p̂ � p̂D) is considered. The contact surface ��
beetwen saturation and unsaturation zones is characterized by condition p̂ = 0 and

S = 1.

2. The governing equation. In the unsaturated zone 
1 one has p̂ = 0 and

Smin < S < 1, therefore Darcy's law (3) reduces to

Rr(S)Au = �

�
�c
rS

S
+rz

�
in 
1 ;(4)

where Rr(S) = [kr(S)]
�1, A = k�1. In the saturated zone 
2, S = 1 and Darcy's

law simpli�es to

Au = �

�
1

%g
rp̂+rz

�
in 
2:(5)

Introducing the function p = �c lnS + z, equation (4) can be rewritten as

Rr(p)Au = �rp in 
1;(6)

where

Rr(p) =
1

kr(e�c(p�z))
:
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Further, we introduce the substitution p = p̂

%g
+ z, equation (5) can be rewritten as

Au = �rp in 
2;(7)

If we de�ne

Rr(p) =

� 1
kr(e�c(p�z))

for p < 0

1 for p � 0
;(8)

then Rr(p) is a bounded function and it holds

1 � Rr(p) �
1

kmin

:(9)

Darcy's law can be now expressed in one formula for both saturated and unsaturated

zones:

Rr(p)Au = �rp in 
:(10)

3. MH-model of the time disretized unsaturated

porous media 
ow. The 
ooding problem will be solved in the time period h0; T i.

This period will be equidistantly partitioned into N subintervals of the length �t =
T
N
. Values of the state variables in the individual time moments will be denoted by

subscripts. 1 We will consider the continuity equation (1) implicitly discretized as

�n � �n�1

�t
+r � un = qn(11)

Consider the decomposition of the domain 
 into system of subdomains (elements)

Eh such that

(i) 
 = [e2Ehe ;

(ii) ei \ ej = ; ; for i 6= j ;

(iii) e 2 Eh is open subset of 
 with a boundary @e smooth enough :

and denote �h = [e2Eh@en�D the system of interelement and Newton- or Neumann-

type boundary faces of elements Eh. We shall introduce the following functional

spaces:

H(div; Eh) = fv 2 L2(
) ; r � ve 2 L2(e) ; 8e 2 Ehg ;(12)

H
1
2 (�h) = f� : �h ! R ; 9' 2 H1

D(
); � = 
h' g ;(13)

W(Eh) = H(div; Eh)� L2(
)�H
1
2 (�h) ;(14)

where 
h is the trace operator on �h and the superscript e denotes the restriction on

element e. Further we de�ne the form

Bn(Eh;Rr(pn); ewn;w) =
X
e2Eh

f(Rr(pn)Au
e
n;v

e)0;e � (pen;r � ve)0;e�

�(r � uen; �
e)0;e + h�en;v

e � nei@e\�h + huen � n
e; �ei@e\�h �(15)

��eh�en; �
ei@e\�

N0
�

�n

�t
(pen; �

e)0;eg ;

1In some cases we will remove the subscripts for simplicity
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and the functional

Qn(Eh;w) =
X

e2Eh;�n

f�h�epeD;n; �
e
i@e\�

N0
� hpD;n;v

e
� nei@e\�D �

�hueR;n; �
ei@e\�T � (qe; �e)0;e �

�n

�t
(pen�1; �

e)0;eg(16)

where (:; :)0;e denotes scalar product in L2 space, �n is shape of free boundary in

n-th time step, ewn = (un; pn; �n) 2W(Eh) , w = (v; �; �) 2W(Eh) �n = �"(pn) for

pn � 0 and �n = "�ce
�c(pn�z).

Definition 3.1. The weak solution of time discretized of mixed-hybrid formu-

lation of unsteady unsaturated 
ow problem given by (11) and (10), by the boundary

conditions mentioned above and by the decomposition Eh of 
 is a Rothe's function

ew(t) = ewn�1
tn � t

�t
+ ewn

t� tn�1

�t
; t 2< tn�1; tn);(17)

where a triplet ewn = (un; pn; �n) 2 W(Eh) satisfying

Bn(Eh;Rr(pn); ewn;w) = Qn(Eh;w)(18)

for all w = (v; �; �) 2W(Eh).

Remark 3.1. Let Rr(p) be an increasing bounded function satisfying (9), pD 2

H
1
2 (�D [ �N 0 , uR 2 H�

1
2 (�T ), � 2 L1(�N 0) and q 2 L2(
). Then there exists

solution of problem (3.1). The bilinear form

C(Eh; [p; �];v) =
X
e2Eh

fh�e;ve � nei@e\�h � (pe;r � ve)0;eg

satis�es on W(Eh) BB-condition and is bounded. The form

A(Eh;Rr(p);u;v) =
X
e2Eh

(Rr(p)Au
e;ve)0;e

is strictly monotone and bounded on W(Eh), as the spectrum of bilinear form

A`(Eh;u;v) =
X
e2Eh

(Aue;ve)0;e

is contained within (amin

h
; amax

h
) and function Rr(p) satis�es (9). Further, the bilinear

form

S(Eh; p; �; �) = �
X
e2Eh

�eh�e; �ei@e\�
N0
�
X
e2Eh

�ehpe; �ei0;e

is bounded negative de�nite. It follows from these properties, that the form

B(Eh;Rr(p); ew;w)
satis�es on W(Eh) BB-condition uniformly and is bounded. Similarly, the functional

Q(Eh;w) is on W(Eh) bounded.
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4. Approximation by mixed-hybrid FEM. The solution of underground

water 
ow problem in the real conditions must re
ect complex geological structure

of sedimented minerals. Layers of the strati�ed rocks with substantially di�erent

physical properties must be modelled using the appropriate discretization of the ge-

ological region. These geological characteristics can be correspondingly described by

the mixed �nite element method using trilateral prismatic elements with vertical faces

and generally nonparallel bases.

Let index h be a discrete parameter of horizontal plane. Due to the characteristics

of the problem, the vertical discretization parameter h0 satis�es h0 � h since the 
ow

domain is usually fairly large (several squared kilometers) in comparison to the vertical

thickness of sedimented layers (several meters).

We assume that the chosen discretization Eh is compatible with boundary condi-

tions, i.e. �N , �N 0 and �D is an uni�cation of some faces of elements from Eh .

Further, let

Wh(Eh) = RT(Eh)�M0
�1(Eh)�M0

�1(�h)(19)

be the approximate �nite dimensional function space de�ned in [3].

Definition 4.1. A function ewn;h;k 2 Wh(Eh) is said to be an approximation

of the weak solution of time discretized mixed-hybrid formulation of the linearized

porous media 
ow problem if the following identity holds

Bn;h(Eh;Rr(pn;h;k�1); ewn;h;k;wh) = Qn;h(Eh;wh) ; 8wh 2Wh(Eh) ;(20)

and

kpn;h;k � pn;h;k�1k0;
 < � ;(21)

where Bn;h and Qn;h are the approximation of the the bilinear form Bn and functional

Qn in the space Wh(Eh). and � is given accuracy limit. For detailed description of

MH-approximation see [1].

5. The numerical scheme. Inserting the basis functions

(vi; �j ; �`) 2 RT
0
�1(Eh) � M0

�1(Eh) � M0
�1(�h)

into the identity (20) one can obtain the following system of equations:

Rn;kA un;k + B pn;k + C �n;k = q1;n;k ;

B
T un;k + H n;k pn;k = q2;n;k ;(22)

C
T un;k + S�n;k = q3;n ;

Methods used for solving this system of equations are described in [4].

We propose the following iterative procedure:

1. Set n = 1, k = 0;

2. pn;h;k is given

3. Fill the system (22) for Rn;k and q1;n;k computed from

Rr(pn;h;k) and �(pn;h;k);

4. Find Un;k+1; Pn;k+1; �n;k+1 as values of the 
ows for faces, piezometric

heads in the barycentra of the elements or faces of the decomposition;
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5. � If jP i
k+1 � P i

k j < �
jeij

j
j
, where jeij is the volume of element ei and j
j is

the volume of domain 
, then set ~Wn = (Un;k+1; Pn;k+1; �n;k+1) and

if n < N then n=n+1, k=0 and continue by step 2; if not computation

is �nished.

� If exist such i that jP i
k+1 � P i

kj � �
jeij

j
j
, then set

P̂ i
k+1 = !iP i

k + (1� !i)P i
k+1 ;

6. Set k = k + 1; ph;k =
X
i

P̂ i
k�i and continue by step 3.

The weights !i(P i
k; P

i
k�1; : : :) are adjusted with some hysteresis to prevent the oscil-

lations of the iterative process.

Remark 5.1. For the computation we will use the mean values of Rr(pn;h;k) for

the faces of the decomposition and the mean values of the speci�c water depositness

�n;h;k in the elements.

6. Application of model in real-world problem. This model was used in the

real-world application for the simulation of the 
ooding of the deep mine as described

in the introduction. Location of remediation area in the Czech republic is shown on

�gure 1

Fig. 1. Localization of remediation area

For numerical calculation of 
ow �eld and transport of chemical species FEM

mesh was used. This mesh, shown on �gure 2, contains more than 20000 trilateral

prizmatic elements with nonparallel bases.

The 
ooding is beeing done by decreasing the activity of the water barrier situated

between the two mines. For the 
ooding the used waters from the previous activities

were used. It is well known for them that they do not react chemically with the
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Fig. 2. Model localization in Str�a�z area and FEM Mesh

basic rock formation of the mines as well as with the other fresh water sources from

the Lu�zice mountain area. The water level of the underground waters will rise by

approximately 90 meters during the whole 
ooding.

Several di�erent variants of 
ooding were calculated to �nd optimal mode of

decreasing the activity of the barrier to minimalize the migration of acidic chemical

species into the area of deep mine. The process of 
ooding was simulated for period

of 2560 days (approx. 7 years) with timestep of 10 days. Figures 3 and 4 shows the

state of 
ow �eld in time 0 and 500 days after begining of 
ooding.

Following two �gures (5 and 6) shows results of transport model.

7. Conclusion. The main advantage of the approach taking into account the

saturation is the use of a �xed grid. The computational cost of one iteration is

relatively low in comparison with adaptive grid approach in phreatic-surface models.

The mixed-hybrid formulation gives the 
ow �eld approximation suitable for �nite-

volume reaction-transport models.
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Fig. 3. Deep mine 
ooding - initial state of 
ow �eld
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Fig. 4. Deep mine 
ooding - state of 
ow �eld after 500 days
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Fig. 5. Deep mine 
ooding - initial state
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Fig. 6. Deep mine 
ooding - after 960 days


