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DIRECT AND INVERSE SOLUTIONS OF THIN FILM FLOW
PROBLEMS

GÜNTER BÄRWOLFF ∗

Abstract. The thin film flow between a magnetic head slider and a hard disk was described by

a mathematic model based on the compressible Navier-Stokes equation. The assumption of a very
small film thickness compared to the horizontal dimensions of the magnetic head slider leads to a 2d
model - the Reynolds equation - for the computation of the pressure distribution beneath the slider.
Both, direct and inverse problems are formulated. A mathematical analysis is done and a numerical
model is constructed.
For the model validation flying height measurements in submicrometer range by means of white
light interferometry were used with an assembly of equal magnetic disk sliders. Statistical evalua-
tion shows reproducible deviations of steady–state flying characteristics from numerical calculations
based on Reynolds equation with slip flow effect.
The basic discretisation principles of the mathematical model (direct and inverse problems) were
demonstrated. Some aspects of grid generation and resulting difficulties were discussed and vali-
dated. In the result of the numerical calculations a proposal for an improvement of the white light
measurement technique by a corrected color scale could be made. The corrected steady–state flying
characteristics show an excellent agreement with calculations.
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1. Introduction. Magnetic disk sliders fly above high speed rotating disks using
aerodynamic action. Present disk files operate with air film thickness of about or less
then 0.2µm to assure a good recording density. Important tools of slider design are
optical methods for flying height measurements and numerical air bearing calculation
methods. Static flying height is usually measured by white light interferometry at a
glass disk [1]. The resolution in the range of 0.1µm . . .1.0µm is determined as 0.05µm.
In [2] is shown that color tone depends on the slider material and light reflectivity
of the surface. A photographic method is developed to achieve a higher resolution of
0.01µm . . .0.015µm. For the validation of the mathematical and numerical model a
work with a high resolution in visual observation is obtained by statistical methods
[11]. Calculation results and measurement results are compared and differences are
discussed.

2. Mathematical Model and Mathematical Analysis. The mathematical
model to describe the steady–state flight of a slider (with a magnetic head) over a
hard disk is based on the balances of mass and impuls of an air bearing. Under some
special assumptions, like

– the flying height is small to be compared with the length of slider and
– the equation of state is of polytropic type,

we get from the compressible Navier–Stokes equation the Reynolds equation (dimen-
sionless form) of the form

G ∇ · (P 1/nH · ~u) = ∇ ·

{

H2

M
P κ(HP + 6Kna)∇P

}

in Ω .(1)
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The equation (1) is valid in the air bearing, or more exactly, in the projection area of
the slider rails Ω. In the mathematical model of the slider we consider for the inner
and outer rail different velocities (u, v) depending on the local radius and yaw angle.
If we suppose isothermic conditions, n and M are equal to 1 and from equation (1)
follows

G (~u · ∇(HP )) = ∇ · (H2(HP + 6Kna)∇P ) in Ω ,(2)

for a constant velocity ~u. At the boundary ∂Ω conditions of the form

P = 1 at ∂Ω(3)

are given. With the Knudsen number in the differential equation (1) we have con-
sidered ”slip”–flow effects, that means the equation (1) describes also very thin flow
films, in which the gas don’t cling to a solid surface (~u = 0 is not given). The contin-
uum hypothesis is valid only in the central region of the flow film. The solution and
control of the boundary value problem (1),(3) is the essential basis to investigate the
different problems of air bearing sliders. The mathematical analysis of the model and
the construction of a numerical method for computation of the pressure field P and
the hydrodynamic force w with the pressure center location (xw , yw) using the input
informations of slider geometry, slider position (radius, yaw angle Φ), disc rotating
number and slit geometry of air film, which is characterisized by hm, α and β are the
main goals. With p = paP we get the hydrodynamic force w and its pressure center
location from the following equation

w =

∫

Ω

p dΩ, xw =

∫

Ω

x(p − pa) dΩ, yw =

∫

Ω

y(p − pa) dΩ(4)

The equation (2) is a nonlinear second order partial differential equation of convection–
diffusion type. For the further investigations we write the equation (2) in the form

~u · ∇(HP ) −∇ · (λ(P + 1)∇ P ) = f ,(5)

with

λ(P ) =
H2

G
(HP + 6Kna) and f = −~u · ∇ H .

Thus we have for P homogenous Dirichlet boundary data

P = 0 at ∂Ω .(6)

For the qualitative analysis we modify the equation (5) in the following way. The
coefficient λ of the equation will be substituted by the coefficient

κc =
H2

G
(HPa + 6Kna) ≥

h2
m

G
(hmPa + 6Kna) =: cκ = const.

with a mean pressure value Pa and thus the modified equation reads

~u · ∇(HP ) −∇ · (κc∇P ) = f .(7)

This modification will be justified later. Now we will discuss existence and uniqueness
results for the boundary value problem (7),(6).
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Theorem 2.1. If ess supΩ(|∇ · (H~u)|) is small (small will be specified during the
proof) and the velocity ~u is constant, then the boundary value problem (7),(6) has a
unique weak solution P ∈ H1

0 (Ω).
Proof. The weak formulation of (7),(6) reads

a(P , Q) :=

∫

Ω

κc∇P · ∇Q dF +

∫

Ω

~u · ∇(HP )Q dF =

∫

Ω

fQ dF ,(8)

and we have to find a P ∈ H1
0 (Ω) for a given f ∈ H−1(Ω).

a(·, ·) is a continuos bilinear form on H1
0 (Ω). Further we have

∫

Ω

(H~u · ∇P )P dF = −
1

2

∫

Ω

∇ · (H~u)P
2

dF .

With the inequality of Poincaré-Friedrichs

||P ||L2 ≤ cF ||∇P ||L2

from the weak formulation we find

a(P , P ) ≥ cκ||∇P ||2L2 +
1

2

∫

Ω

(∇ · (H~u)P
2

dF

≥ cκ||∇P ||2L2 −
c2
F

2
ess sup

Ω

(|∇ · (H~u)|)||∇P ||2L2

and with the condition ess supΩ(|∇ · (H~u)|) ≤ const. < 2cκ

c2

F

we have

a(P , P ) ≥ cκ||∇P ||2L2 a.e.,

that means a(·, ·) is strict positive on H1
0 (Ω). The lemma of Lax-Milgram guarantees

the existence of a weak solution and from the above inequalities we see that the
solution is unique.
Remark. The condition

ess sup
Ω

(|∇ · (H~u)|) ≤ const. <
2cκ

c2
F

is for the given thin film flow problem realistic, because the ascent of the slider is very
small (pitch, roll and taper angles are very small).
Now we will discuss the nonlinear problem with the coefficient

κ(P ) =
H2

G
(H |P + 1| + 6Kna)

and thus we have the equation

~u · ∇(HP ) −∇ · (κ(P )∇P ) = f .(9)

instead of the equation (5) or (7). We note that the equation (9) is our model equation
(5) if P ≥ 0.

Theorem 2.2. If ess supΩ(|∇·(H~u)|) is small and the velocity ~u is constant, then
the nonlinear boundary value problem (9),(6) has a unique weak solution P ∈ H 1

0 (Ω).
Proof. The proof is analog to the proof of theorem 2.1. We can show, that κ(P )

fulfills the conditions of lemma 1.6 of the book of Gajewski/Gröger/Zacharias [6] and
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we have the strong monotonity of a(·, ·) and therefore the existence and the uniqueness
of the solution.
Now we will investigate if the solution P of the problem (9),(6) is non negative. We
can show the

Theorem 2.3. If ess supΩ(|∇·(H~u)|) is small, ∇·(H~u) ≤ 0 a.e. and the velocity
~u is constant, then the solution of the nonlinear boundary value problem (9),(6) is non
negative.

Proof. We take the weak formulation (8) modified by κ instead of κc with Q = P
−

and get

∫

Ω

κ(P +1)∇P ·∇P
−

dF +

∫

Ω

(H~u·∇P )P
−

dF +

∫

Ω

(~u·∇H)PP
−

dF = −

∫

Ω

~u·∇HdF .

Now we follow a technique used in [7]. Because of the relations

∇P · ∇P
−

= ∇P
−

· ∇P
−

, (~u · ∇P )P
−

= (~u · ∇P
−

)P
−

, PP
−

= (P
−

)2

we get

κ1||∇P
−

||2L2 +
1

2

∫

Ω

∇ · (H~u)(P
−

)2 dF +

∫

Ω

(~u · ∇H)P
−

dF ≤ 0 ,

with κ1 = H2

G 6Kna. Further we have ~u ·∇H = ∇· (H~u) ≤ 0 because of the constance
of ~u. Then with the smallness of ess supΩ(|∇ · (H~u)|) we get the inequality

||∇P
−

||2L2 ≤ 0

and this means ∇P
−

and P
−

are equal to zero and thus P is a.e. non negative .
With the theorem 2.3 we have shown the existence of the original mathematical model
(5),(6). This justifies the use of κ(P ) instead of λ(P ).

Remark¿ The condition ∇· (H~u) ≤ 0 is valid for the considered slider configuration,
because the velocity components are positiv and the ∂H

∂x is negative and | ∂H
∂y | is very

small compared to | ∂H
∂x |.

3. Numerical Model for the Direct and Inverse Problem. Because of the
fluid-aerodynamical background we prefer for the numerical solution of the bound-
ary value problem a finite volume method (see [9]). The integration region Ω is
discretisized by a grid of rectangles. The equation (1) is integrated over Ω. Using
the additivity of the integral with respect to the integration region and the integral
theorem of Gauss we get for all grid cells ωij (see 1) with the boundary γ the relation

∫

γ

~u · n HP dγ +

∫

γ

λ(∇P ) · n dγ = 0(10)

where λ stands for the expression H2(HP + 6Kna)/G and ~u = (u, v) = (cosΦ, sinΦ)
is set for simplification. n denotes the outer normal vector.
The analysis of the integral relation (10) for every cell yields under the assumption that
the solution between two neighbouring cell centers can be approximately described
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Fig. 1. Cells and supporting points of finite–volume grid

by a piecewise linear function the following finite difference expression for the second
integral

D1 = (λi+1/2j(Pi+1j − Pij)/∆x − λi−1/2j(Pij − Pi−1j)/∆x)∆y(11)

+(λij+1/2(Pij+1 − Pij)/∆y − λij−1/2(Pij − Pij−1)/∆y)∆x .

In the case of the convective terms (first integral of (4)) for P on the boundary γ of
a cell we use a very special interpolation depending on the sign of u resp. v instead
of the linear interpolation of the P–values in the centers of neighbouring cells to get
a stable scheme. This interpolation gives us the weighted upwind approximation of
the form

D2 = (0.5(u− τ |u|)(HPi+1j − HPij)/∆x + 0.5(u + τ |u|)(HPij − HPi−1j)/∆x(12)

+0.5(v − τ |v|)(HPij+1 − HPij)/∆y + 0.5(v + τ |v|)(HPij − HPij−1)/∆y)∆x∆y .

We have to choose the weighting factor τ from the intervall [0,1] in dependence of the
magnitude of the bearing number G as small as possible, because the used approxi-
mation of the convective terms is of the order O(h2−τ ).
For a transparent deduction of the difference expressions D1 and D2 we use a grid
with the uniform grid parameters ∆x, ∆y and we suppose a piecewise constant ve-
locity (u,v) with regard to the cells.
The result of the described integral–interpolation method is after addition of D1 and
D2 and some simple steps of recalculation the following finite difference equation
system

(u(HP )◦
x
+ v(HP )◦

y
)− ([

τ

2
|u|∆x+λi+1/2j ]Px)x − ([

τ

2
|v|∆y +λij+1/2]Py)y = 0,(13)

where i and j are indices of inner points of Ω. The discretisized boundary conditions

Pij = 1 ,(14)

close the equation system (13), where i and j are indices of boundary points of ∂Ω
(boundary of Ω). The algebraic equation system (13),(14) is nonlinear, because the
coefficient λ depends on the solution P . We solve (13),(14) with an iteration method
of Gauss–Seidel type. The equation (13) shows, that an artificial conduction term
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follows from the use of an approximation like (12) with a nonzero τ . Especially in
the case of very large bearing numbers we can solve the equation system in a stable
way only with a τ near by 1. To minimize the resulting discretisation errors we have
to guarantee that the terms

τ

2
|u|∆xPxx ,

τ

2
|v|∆yPyy(15)

will be small. If the expressions Pxx, Pyy of (15) are very small in a subset Ωs of
the integration region Ω, then the discretisation error which follows from the upwind
approximation is neglectible, on the other hand we have to make ∆x and ∆y very
small to decrease the errors. The expressions (15) are used as error indicators. The
local evaluation of the expressions (15) show the necessarity of a local grid refinement
at the position l1 behind the trailing edge because of the large curvature of the pressure
field and the boundary layer at the trailing edge in the back area of the slider. Only
the grid refinement in x–direction is essential. In the y–direction an equidistant grid
is sufficient.
The validation of the numerical method was made by comparison of numerical results
and experimental data from our laboratory (see [10]) of some well investigated flights
of a winchester slider. Furthermore we compared our results successfully with the
results of [2]–[8]. The numerical results presented in this paper we have got with a
grid of 210 × 20 points for the discretisation of one slider rail (the bearing numbers
amount approximately to 102 up to 105). This number of grid points was necessary to
get a good coincidence (that means, that the differences of numerical and experimental
results are less than accuracy of measurements). Also we have done computations with
finer grids and thus we could show grid-independence of the results.
With the just described numerical solution method we are able to solve P, w, xwandyw

for given hm, α and β, that means direct problems. The computation of w, xw and
yw after (4) is made analytically on the assumption that the solution of (13),(14) is
piecewise linear.
The inverse problem means the computation of hm, α and β from the solution of an
equation system of the form

g1 = w(hm, α, β) − f = 0

g2 = w(hm, α, β)(xf − xw(hm, α, β)) − mα = 0(16)

g3 = w(hm, α, β)(yf − yw(hm, α, β)) − mβ = 0 .

We use a Newton iteration method to solve this problem. Because the functional
relations between w, xw, yw and hm, α, β are not given explicitly, but only given
implicitly over the boundary value problem (1),(3), we approximate the derivatives
in the Jacobian of the Newton method by finite difference expressions, for example

∂g1

∂α
by

w(hm, α + ∆α, β) − w(hm, α, β)

∆α

Following this, one Newton–iteration step for solving the equation system (16) requires
the solution of four boundary value problems of type (1),(3). Additionally we have
to solve the boundary value problem (1),(3) for the new Newton–iteration h∗

m, α∗, β∗

to measure the quality. Using the fact, that the moments mα and mβ in most of the
practical problems are neglectible, we are able to consider the simplified system

e1 = w(hm, α, β) − f = 0



72 G. BÄRWOLFF

e2 = xf − xw(hm, α, β) = 0(17)

e3 = yf − yw(hm, α, β) = 0

instead of the equation system (16) and we get a substantial simplification of the Jaco-
bian. In addition to the determination of the steady–state flying parameters hm, α
and β with a Newton method following [11] we build the approached analytical rela-
tions of the form

hm = a1 ∗ wb1 ∗ xc1

w ∗ yd1

w α = a2 ∗ wb2 ∗ xc2

w ∗ yd2

w β = a3 ∗ wb3 ∗ xc3

w ∗ yd3

w(18)

with means of least square analysis. If we don’t have any practical or experimental
informations we can use the relations (18) to get a good start iteration for the Newton
method, for example

h0
m = a1 ∗ f b1 ∗ xc1

f ∗ yd1

f

etc.. The figures 2 and 3 show the pressure contour lines and the pressure moun-
tain beneath the slider for w = 150 mN located at the geometrical center of the slider
and hm = 165 nm, α = 12, 9” and β = 3, 7” (G = 3000 (inner rail), U = 20 m

s , Ψ = 0).
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Fig. 2. pressure contour lines Fig. 3. pressure mountain

4. Slider Specifications and Physical Situation. Taper flat sliders made of
AlTiC were used for this investigation. Table 1 shows the air bearing geometry and
slider parameters (see fig. 4).

A series of 27 sliders with an averaged slider load w = 145mN and a deviation of
8mN rms was considered.

5. Numerical vs. Experimental Results. Flying height was measured by
white light interferometry through a glass disk of 3 mm thickness. The white light
source was a microscopy lamp (metal filament) with a day light filter. The optical
system was used with magnification 25×, numerical aperture 0.08 and angle of inci-
dence 20o. The colors were determined visually at the four ends of the slider rails (at
the centre lines; taper ignored). The flying height was found based on the color scale
in [1], fig. 5. This color scale is listed in table 2, first and second column.
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geometry lx 4.00mm
b 0.50mm
ba 2.20mm
l1 0.375mm
γ 45‘
xf 2.00mm from leading edge
yf symmetrical

material slider suspension 3380 type
location at glass disk Φ 0o at pivot point

r 34mm . . .62mm at pivot point
rotational speed of disk 3740rpm
surface velocity U 13.3m/s . . .24.3m/s

Table 1

Slider configuration

l

l

bb

hm

y

(a) (b) (c)

βα

γ

x

1 a

Fig. 4. Slider specification, (a) side view, (b) back view, (c) view from below

5.1. Results with the color scale of [1]. The flying height of a series of
sliders were averaged. The mean deviations mainly caused by tolerances of the various
sliders and color detection errors were 0.025µm rms at trailing edge and 0.05µm rms
at leading edge for both series.
Results are plotted in fig. 5. Ho and Hi are spacing at leading edge (at the location
x = l1, y = b/2 resp. y = ba + b/2), outer and inner rail, ho and hi are the same at
trailing edge (at the location x = l, y = b/2 resp. y = ba + b/2).
Fig. 5 shows that the flying height dependence on velocity determined by color scale
[1] does not agree with calculation in this paper and in [2] – [8]. The measured curves
have points of inflexions and regions with the false sign of curvature. It is found that
near 0.2µm and 0.4µm . . .0.45µm the slope of the curves is too flat, but in the regions
0.25µm . . .0.35µm and 0.5µm . . .0.6µm too steep. Therefore the color scale for this
special experimental apparatus must be corrected. Thus the influence of the color
tone caused by material and reflexivity of the surfaces, the personal color sensitivity
of the observer and the characteristics of the white light source were eliminated for
visual observation.

5.2. Correction of Color Scale and Conclusional Results. Sliders of high
flatness (< 15nm) were used to correct the color scale. 22 series of color location
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color spacing (µm) found in [1] spacing (µm) found in this work
very black 0.01
black 0.03
gray 0.05
white 0.13 0.13
yellow 0.18 0.19
orange 0.20 0.21
red 0.23 0.24
violet 0.28 0.27
indigo 0.31 0.30
blue 0.35 0.32
green 0.38 0.36
yellow 0.41 0.42
orange 0.43 0.45
bright red 0.46 0.48
scarlet 0.49 0.51
purple 0.53 0.53
indigo 0.55 0.54
blue 0.59 0.56
green 0.63 0.60
yellow 0.68
red 0.73

Table 2

color scales for vertical incidence

measurements along the slider rails were made with the slider in various static flying
positions or resting in contact with an optical flat. The color locations we measured
by an eyepiece screw micrometer.
The data of each slider position alone were fitted by linear regressions with the corre-
sponding values from the color scale [1]. The achieved results from all slider positions
for each color differed within ±0.015µm and were averaged. The results reduced to
0o incidence angle are listed in table 2, column 3. This color scale is used to plot the
flying height of the above two series of sliders in fig. 6. These static flying character-
istics are in better agreement with results of the calculation method described in this
paper. The comparisons are demonstrated in fig. 7. They continously have negative
curvature and no point of inflexion. To get one (hm, r)–graph we have to solve six
inverse problems for the radii r = 35mm, 40mm, 45mm, 50mm, 55mm, 60mm.
The solution of an inverse problem needs two or three iteration steps (if the initial
values of hm, α and β are not very bad) to get an accuracy of 0.1 % with regard to
the solution quality functional (for the case mα = mβ = 0)

Z(hm, α, β) =
1

3
[cx(xw − xf )2 + cy(yw − yf )2 + ck(w − f)2] ,

with cx = 1/x2
f , cy = 1/y2

f and ck = 1/f2.
At our numerical calculations we can’t consider the torques mα and mβ , because we
have not reliable informations about these parameters. Nevertheless the considera-
tion of a torque mα of 12mN ∗ mm leads to a hm–increasing of nearly 10nm and an
α–decreasing of nearly 1.5”.
The calculated roll angles are in a sufficient coincidence with the experimental data,
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that means the differences between numerical and experimental data are 0.5” in max-
imum.

6. Conclusions. It could be shown that the boundary value problem (1),(3) has
at least one weak solution P greater or equal to the Dirichlet boundary value 1. The
discussed mathematical model and especially the inverse problem namely the equa-
tion system (16) with the boundary value problem (1),(3) as a restriction gives a very
good possibility to solve problems of practical interest effectivly and accurately. With
regard to numerical solution of the problem (1),(3) by the described finite volume
method the regions of large pressure curvatures and the boundary layer in the back
area of slider require a solution adaptiv grid refinement.
The using of local variable velocities (at least in x–direction as a function of the radius
and the yaw angle at the point (x, y) of Ω) along the rails gives better results than
the using of constant averaged velocities for every rail. In disk regions with a small
radius the using of variable velocities will be necessary.
The comparison of experimental results by white light interferometry using the cor-
rected color scale and the numerical results of ourself and other In the case of our
regular slider with two rails the finite volume method is good and flexible enough
for the numerical solution of the boundary value problem (1),(3). The flying heights
discussed in this paper were choosed because of the considered measurement tech-
nique and the mathematical and numerical model is only restricted by the continuum
hypothesis i.e. the validity of the Reyolds equation. Thus the method is applicable to
smaller flying heights. To illustrate this the figure 8 shows the computational results
for hm = 140 nm, α = 7.6′′ and β = 1, 7′′ with w = 280 mN at the slider center(Ψ = 0,
U = 20 m

s ) of the investigated slider characterized in table 1.

Fig. 5. Experimental results with
the color scale finding in [1]

Fig. 6. Experimental results with
the corrected color scale

If the projection area Ω of the slider is more complex (”tripad–slider”, ”delta–slider”,
several types of zero–load–sliders) we have to work with appropriate finite cells ωij

for the construction of a numerical solution of the boundary value problem (1),(3)
instead of the rectangular finite volumes presented in this paper. Another possibility
for the construction of a numerical solution method is the use of a FE-method based
on the weak formulation (8).
In our solution procedure of the inverse problem we have to replace only the modular
finite volume solver by a modified solver for the boundary value problem (1),(3) for a
more complex region Ω.
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Fig. 7. Comparison of experimen-
tal results with the corrected color scale
and theoretical results for hi and Hi,
• experimental data, × numerical data
(solution of inverse problems)

Fig. 8. pressure mountain

The developed mathematical model and the numerical solution methods of the non-
linear direct and inverse problems allows both the efficient computation of a pressure
field and the determination of the slider position (hm, α and β) for a given load w
and a pivot point (xf , yf ) in a few seconds on a personal computer in a good quality
compared to the experimental data.
For flying height in the range of about 20 nm to increase the capacity of harddisks
a description of the thin film flow by a Reynolds-type equation is possible, but hte
equation has to be modified (see [12]). The presented mathematical and numerical
considerations are still applicable.
But for a more precise description of the thin film flow problem the Boltzmann equa-
tion is much more suitable then Reynolds-type equations.
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Appendix.
~u = (u, v) velocity vector related to surface velocity U at the slider center,
lx characteristic length of air bearing (length of slider),
l1 taper length,
γ taper angle,
b, ba rail width, distance between rail centre lines,
r, Φ radius, yaw angle at the slider center,
G = 6µalxU

pah2
m

bearing number,

Ω projection area of slider rails,
µ, µa viscosity of air, characteristic viscosity of air (at ambient pressure pa),
λa molecular mean free path (at ambient pressure),
M = µ

µa

dimensionless viscosity,

Kna = λa

hm

Knudsen number,
κ = (1 − n)/n with polytropic exponent n,
h, hm local film thickness, minimum film thickness (spacing, flying height),
α, β pitch and roll angle,
mα, mβ impressed torques of slider in zero–position,
H = H(x, y) normalized film thickness h/hm,
P = P (x, y) pressure field (related to ambient pressure)
w hydrodynamic force, load carrying capacity of bearing (two rails),
(xw, yw) pressure center location,
f slider load and
(xf , yf ) location of pivot point.


