
Proceedings of ALGORITMY 2002
Conference on Scientific Computing, pp. 245–252

POLYGONIZATION BY THE EDGE SPINNING ∗

M. ČERMÁK AND V. SKÁLA†

Abstract. This paper presents a new method for polygonization of implicit surfaces. Our
method put emphasis on the shape of triangles of the resulting polygonal mesh. The main advan-
tages of the triangulation presented are simplicity and the stable features that can be used for next
expanding. The implementation is not complicated and only the standard data structures are used.
This algorithm is based on the surface tracking scheme and it is compared with the other algorithms
which are based on the similar principle, such as the Marching cubes and the Marching triangles
algorithms.

Key words. implicit surfaces, marching triangles, polygonization, triangulation, marching
method

AMS subject classifications. 65D18, 68U05

1. Introduction. Implicit surfaces seem to be one of the most appealing con-
cepts for building complex shapes and surfaces. They have become widely used in
several applications in computer graphics and visualization.

An implicit surface is mathematically defined as a set of points in space x that
satisfy the equation f(x) = 0. Thus, visualizing implicit surfaces typically consists in
finding the zeroset of f , which may be performed either by polygonizing the surface
or by direct raytracing.

There are two different definitions for implicit surfaces. The first one [2], [3] defines
an implicit object as f(x) < 0 (function f1(x) below) and the second one, F-rep [7],
[12], [14] (functional representation, function f2(x)) defines it as f(x) ≥ 0. In our
implementation, we use the F-rep definition of implicit objects. The implicit functions
described below show the differences between both definitions for the function Sphere.

f1(x) : x2 + y2 + z2 − r2 = 0 ,

f2(x) : r2 − x2 − y2 − z2 = 0 .

2. Data structures. The presented algorithm uses only the standard data
structures used in computer graphics. The main data structure is edge that is used
as a basic building block for polygonization. We use the standard winding edge and
therefore, the resulting polygonal mesh is correct and complete with neighborhood
among all triangles generated. The basic data structures used there are:

- edge – winding edge
- active edge – an edge that lies on the triangulated area’s border; implemented

as an index into winding edge’s array
- list of active edges – dynamically allocated list of active edges
- point – if a point lies on an active edge it contains also two pointers to left

and right active edge; left and right directions are in active edges orientation

∗This work was supported by Grant No.: MSM 235200005.
† Department of Computer Science, University of West Bohemia, Univerzitni 8, Box 314, 306 14

Plzen (cermakm@kiv.zcu.cz, skala@kiv.zcu.cz)

245

246 M. ČERMÁK AND V. SKÁLA

3. Principle of our algorithm. Our algorithm is based on the surface tracking
scheme and therefore, there are several limitations. A starting point must be deter-
mined and only one separated implicit surface can by polygonized for this first point.
Several disjoint surfaces can be polygonized from a starting point for each of them.
The whole algorithm consists of following steps:

1. Find a starting point p0.
2. Create a first triangle T0, see Fig. 1.
3. Include the edges (e0, e1, e2) of the first triangle T0 into the active edges list.
4. Polygonize the first active edge e from the active edges list.
5. Delete the actual active edge e from the active edges list and include the new

generated active edges at the end of the active edges list.
6. Check the distance between the new generated point pnew and all the other

points which lie on the border of already triangulated area (which lie in all
the other active edges).

7. If the active edges list is not empty return to step 4.

Fig. 1. The first steps of the algorithm.

4. Starting point. There are several methods for finding a starting point on an
implicit surface. These algorithms can be based on some random search method as in
[2] or on more sophisticated approach. In [15], searching in constant direction from
an interior of an implicit object is used.

In our approach, we use a simple algorithm for finding a starting point. A starting
point is sought from any place in a defined area in the direction of a gradient vector
∇f of an implicit function f . The algorithm looks for a point p0 that satisfies the
equation f(p0) = 0.

5. First triangle. The first triangle in polygonization is assumed to lie near a
tangent plane of the starting point p0 that is on the implicit surface.

1. Determine the normal vector n = (nx, ny, nz) in the starting point p0, see
Fig. 2.; n = ∇f/‖∇f‖

2. Determine the tangent vector t as in [5].
If (nx > 0.5) or (ny > 0.5) then t = (ny,−nx, 0); else t = (−nz, 0, nx).

3. Use the tangent vector t as a fictive active edge and use the edge spinning
algorithm (described bellow) for computation coordinates of the second point
p1. The pair of points (p0, p1) forms the first edge e0.

POLYGONIZATION BY THE EDGE SPINNING 247

4. Polygonize the first edge e0 with the edge spinning algorithm for getting the
third point p2. Points (p0, p1, p2) and edges (e0, e1, e2) form the first triangle
T0.

Fig. 2. First triangle generation.

6. Edge spinning algorithm. The main goal of this work is a numerical sta-
bility of a surface point coordinates’ computation for objects which are defined by
the implicit function. Differential properties for each implicit function are different in
dependence on the modeling techniques [6], [7], [10], [12], [13], [14] and the accurate
determination of a position of a surface vertex depends on them. In general, a surface
vertex position is searched in direction of a gradient vector of an implicit function f ,
e.g. in [5]. In many cases, the computing of a gradient of the function f is influenced
by a major error. Because of these reasons, in our approach, we have defined these
restrictions for finding a new surface point pnew :

- The new point pnew is sought in a constant distance, i.e. on a circle; then
each new generated triangle preserves the desired accuracy of polygonization
– the average edge’s length δe. The circle radius is proportional to the δe.

- The circle lies in the plane that is defined by the normal vector of triangle
Told (see Fig. 3) and axis o of the actual edge e; this guarantees that the new
generated triangle is well shaped (isosceles).

Then, the algorithm is:

1. Set the point pnew to its initial position; the initial position is on the triangle’s
Told plane on the other side of the edge e, see Fig. 3. Let the angle the of
initial position be α = 0.

2. Compute the function values f(pnew) = f(α), f(p′

new) = f(α + ∆α) – initial
position rotated by the angle +∆α, f(p′′new) = f(α − ∆α) - initial position
rotated by the angle −∆α; the rotation axis is the edge e.

3. Determine the right direction of rotation; if |f(α + ∆α)| < |f(α)| then +∆α
else −∆α.

4. Let the function values f1 = f(α) and f2 = f(α ± ∆α); actualize angle
α = α ± ∆α.

5. If (f1 · f2) < 0 then compute the accurate coordinates of the new point pnew

by the binary subdivision between the last two points which correspond to
function values f1 and f2; else return to step 4.

6. Check if both triangles Told and Tnew do not cross each other; if the angle
between these triangles β is greater than βlim (see Fig. 4) then point pnew is
accepted; else point pnew is rejected and return to step 4.

248 M. ČERMÁK AND V. SKÁLA

Fig. 3. The edge spinning algorithm principle.

Fig. 4. The angle between two triangles; the view is in direction of edge’s vector e.

7. Active edge polygonization. Polygonization of an active edge e consists of
several steps. At first, the algorithm checks adjacent active edges of the active edge e
and determines which case appeared, see Fig. 5.

- If (αi < αlim 1) then case a); i = 1, 2.
- If (α2 < αlim 2) and (‖pe1−pr e2‖ < δlim 1) then case a); analogically for α1.
- If (α2 > αlim 3) and (‖pe1 − pr e2‖ < δlim 2) then case b); analogically for

α1.
- else case c)

The relations among limit angles are αlim 1 < αlim 2 ≤ αlim 3.

Possible cases which are illustrated in Fig. 5 are:

a) In this case, algorithm creates a new one triangle and includes a new active
edge enew to the end of the active edges list.

b) In some situations, the length of certain edges can be shorter then tolerable
limit. In this case, algorithm must repair the length of the new edges enew1

and enew3 to achieve better shapes of next triangles. The axis o1 (see Fig.
5.) is used as a fictive active edge for the algorithm edge spinning and the
new point pnew is created as well as two new triangles.

c) In all the other situations, the edge e is polygonized by the standard algorithm
edge spinning.

8. Distance test. To preserve the correct topology and the shape of the mesh
triangles it is necessary to perform the distance check between the new triangle and a
border of already triangulated area. Therefore, each new generated point pnew must

POLYGONIZATION BY THE EDGE SPINNING 249

Fig. 5. The possible cases for polygonization of an active edge e.

be checked for distance with all the other points which lie in active edges. Let the
point pmin be the nearest point to this new point pnew and distance between both
points is δ = ‖pnew − pmin‖. Further, let pmin not lie in the active edges which are
in the neighborhood of both active edges which contain the point pnew . Then, there
are two cases described in Fig. 6.

a) If δ < δlim 3 then the new point pnew is replaced with the point pmin.
b) If δ < δlim 4 then a new triangle must be created between the new point

pnew and one of two active edges which contain the point pmin, i.e. either
the triangle (pmin, pnew, pr min) or the triangle (pl min, pnew, pmin), see Fig.
6b. The decision, which active edge will be used, depends on angles α1, α2.
The angles αi, i = 1, 2 are in interval < 0, π > and therefore, the triangle
with the angle αi that is better approximation of angle 90˚ is chosen.

The relation between distance limits is δlim 3 < δlim 4.
Now, the situation described in Fig. 6 a) and b) is similar for both cases. Point

pnew is contained in four active edges e1, e2, e3, e4 and a border of already triangulated
area intersects itself on it. Solution of the problem will be introduced on case b) and
solution for case a) is analogical. Let the four active edges be divided into pairs; the
left pair is (e3, e2) and the right pair is (e1, e4). One of these pairs will be polygonized
and the second one will be cached in memory for later use. The solution depends on
angles β1, β2, see Fig. 6b. If (β1 < β2) then the left pair (e3, e2) is polygonized; else
the right pair (e1, e4) of active edges is polygonized. In both cases, the second pair
that is not polygonized is deleted from the list of active edges and the point pnew is
contained only in one pair of active edges.

In Fig. 6b, the first case is valid (β1 < β2), i.e. the active edges (e3, e2) are
polygonized in order that depends on angles γ3, γ2. If (γ3 < γ2) then the active edge
e3 is polygonized as the first; else the active edge e2 is polygonized first.

250 M. ČERMÁK AND V. SKÁLA

Fig. 6. The possible cases for distance test.

Now, the border of the triangulated area does not cross itself in the point pnew

and the recently polygonized pair of edges is removed from the active edges list. The
previously cached pair of edges must be returned into the list of active edges.

9. Experimental results. The Edge spinning algorithm is based on the sur-
face tracking scheme (also known as the continuation scheme). Therefore, we have
compared it with other methods based on the same principle – the Marching triangles
algorithm (introduced in [5]) and the Marching cubes method (introduced in [2]).

Values from our experiment are shown in Table 1. Variable N represents an aver-
age scale of triangle edge’s length, i.e. the scene detail grows with N . From measured
values follows that the Edge spinning algorithm generates about 15% triangles less
then the Marching triangles algorithm and about 24% less then the Marching cubes
algorithm.

N 160 240 400 630 1000
Edge spinning Triangles 13 368 29 892 81 708 207 290 521 320

Vertices 6 680 14 942 40 850 103 641 260 656
Marching triangles Triangles 15 689 35 267 97 943 244 107 613 641

Vertices 7 840 17 629 48 967 122 049 306 816
Marching cubes Triangles 17 568 39 520 109 608 271 344 684 016

Vertices 8 772 19 756 54 800 135 668 342 004

Table 1

A number of triangles and vertices generated for each type of polygonization algorithm.

This experiment was made on the Genus object with the implicit function:

r4

zz2 − (1 − (x/rx) − (y/ry))
(

(x − x1)
2 + y2 − r2

1

) (

(x + x1)
2 + y2 − r2

1

)

= 0

where rx = 6; ry = 3.5; rz = 4; r1 = 1.2; x1 = 3.9.

POLYGONIZATION BY THE EDGE SPINNING 251

The triangular meshes generated by the discussed algorithms are shown in Fig.
7. More detailed comparison of the quality of the triangle mesh generated is shown
in histogram, see Fig. 8. The histogram shows the percentage ratio of the angles
incidence. This experiment demonstrates that the Edge spinning algorithm has the
highest number of angles in triangulation in interval < 50o, 70o >. The Marching tri-
angles method also generates well-shaped triangles and the Marching cubes algorithm
generates poor polygonal mesh.

The presented results were verified on many nontrivial implicit surfaces.

Fig. 7. Object Genus generated for N=160 (see Table 1) by a) the Edge spinning, b) the
Marching triangles, c) the Marching cubes algorithm.

Fig. 8. Histogram of triangles shape quality for the Edge spinning, the Marching triangles and
the Marching cubes algorithms. Generated for N=1000, see Table 1.

252 M. ČERMÁK AND V. SKÁLA

10. Conclusion. In this paper, we have presented the new principle for poly-
gonization of implicit surfaces. The algorithm marches over the object’s surface and
computes the accurate coordinates of new points by spinning the edges of already gen-
erated triangles. Presented algorithm can polygonize implicit surfaces which comply
C1 continuity. In future work, we want to modify the current algorithm for implicit
functions with only C0 continuity. We suppose that our defined restrictions, for poly-
gonization of an active edge, are the right way. In next research, we will work on
adapting of the Edge spinning algorithm to local curvature of an implicit surface, [1],
[9].

Acknowledgements.. The authors of this paper would like to thank all those
who contributed to development of this new approach, especially to colleagues MSc.
and PhD. students at the University of West Bohemia in Plzen. Presented project
was implemented as a part of the MVE (Modular Visualization Environment), [8],
[11].

REFERENCES

[1] Akkouche, S., Galin, E.: Adaptive Implicit Surface Polygonization using Marching Triangles,
Computer Graphic Forum, 20 (2) (2001), 67–80.

[2] Bloomenthal, J.: Graphics Gems IV, Academic Press, 1994.
[3] Bloomenthal, J.: Skeletal Design of Natural Forms, Ph.D. Thesis, 1995.
[4] Bloomenthal, J., Bajaj, Ch., Blinn, J., Cani-Gascuel, MP., Rockwood, A., Wyvill, B.,

Wyvill, G.: Introduction to implicit surfaces, Morgan Kaufmann, 1997.
[5] Hartmann, E.: A marching method for the triangulation of surfaces, The Visual Computer 14

(1998), 95–108.
[6] Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Marching Triangles: Range Image

Fusion for Complex Object Modelling, Int. Conf. on Image Processing, 1996.
[7] ”Hyperfun: Language for F-Rep Geometric Modeling”, http://cis.k.hosei.ac.jp/F̃-rep/
[8] MVE – Modular Visualization Environment project, http://herakles.zcu.cz/research.php, Uni-

versity of West Bohemia in Plzen, Czech Republic, 2001.
[9] Ohraje, Y., Belyaev, A., Pasko, A.: Dynamic meshes for accurate polygonization of implicit

surfaces with sharp features, Shape Modeling International 2001, IEEE, 74–81.
[10] Pasko, A., Adzhiev, V., Karakov, M., Savchenko,V.: Hybrid system architecture for volume

modeling, Computer & Graphics 24 (2000), 67–68.
[11] Rousal, M., Skala, V.: Modular Visualization Environment - MVE, Int. Conf. ECI 2000, Her-

lany, Slovakia, 245–250 (ISBN 80-88922-25-9).
[12] Rvachov, A.M.: Definition of Rfunctions, http://www.mit.edu/∼maratr/rvachev/p1.htm
[13] Shapiro, V., Tsukanov, I.: Implicit Functions with Guaranteed Differential Properties, Solid

Modeling, Ann Arbor, Michigan, 1999.
[14] Uhlir, K., Skala, V.: Interactive system for generating and modeling implicit functions, sub-

mitted for publication, 2002.
[15] Triquet, F., Meseure, F., Chaillou, Ch.: Fast Polygonization of Implicit Surfaces, WSCG’2001

Int.Conf., p. 162, University of West Bohemia in Pilsen, 2001.

