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NUMERICAL SOLUTION OF DEGENERATE

CONVECTION-DIFFUSION PROBLEM USING BROYDEN SCHEME

IVAN CIMRÁK ∗

Abstract. Nonlinear parabolic convection - diffusion equations with nonlinearity in both con-
vection and diffusion terms lead to many problems in numerical implementation. Up-Wind scheme
is used to avoid these problems (such as non-physical oscillating of the solution).

The equation is discretized in time by Rothe’s method and then degenerate elliptic equations
occur. After a space discretization on each time level the problem can be transformed into solving
of large systems of nonlinear equations. In this paper we use Broyden method to solve such systems.
We mainly focus on numerical aspects.
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Numerical solution of degenerate convection-diffusion problem using Broyden
scheme

1. Introduction. The main purpose of this paper is to show several aspects of a
numerical computing of degenerate parabolic equations. We will be mainly concerned
with the following nonlinear parabolic equation:

∂tu + M · ∇(γ(u)) − ∆β(u) = 0, in Ω × I, I = (0, T ),(1.1)

where M is a constant vector, γ is a function describing the nonlinearity in a convective
term. The numerical results will be computed with γ(u) = up, p >= 1. The function
β describes the nonlinearity in a diffusion term. We consider β(u) = us, s > 1. The
problem will be taken with the Dirichlet boundary condition and the initial condition:

u(x, t)|∂Ω×I = 0,(1.2)

u(x, 0) = u0(x) in Ω.(1.3)

The problem with such parameters describes slow diffusion in porous media. In general
the solution (if exists) does not need be necessarily smooth, that is why we have to
deal with the weak solution of the problem.

1.1. Weak formulation. Notice that the problem (1.1) - (1.3) is a degenerated
parabolic equation in the case β′(0) = 0.

Definition 1. A function u is called a weak solution to the problem P iff
i) u ∈ L2(I, H1

0 (Ω)) ∩ L∞(I × Ω);
ii) u satisfies the integral identity

∫ T

0

∫

Ω

(u(x, t) − u0(x)) vt(x, t)dx dt +

∫ T

0

∫

Ω

M · ∇ (γ(u(x, t))) v(x, t)dx dt +

∫ T

0

∫

Ω

∇β(u(x, t))∇v(x, t)dx dt = 0,
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for all v ∈ L2(I, H1
0 (Ω)) such that vt ∈ L∞(I × Ω) and v(., T ) = 0.

It worth to note that the problem has at most one weak solution (see [11]). In [9]
a proof of the existence of a solution as well as convergence of Rothe’s method used
for solving parabolic equations of the form (1.1) for specific M has been shown. In [8]
authors suggested a linear approximation scheme for solving the problem (1.1) - (1.3)
and they proved the convergence of approximative solutions to an exact solution. For
the numerical implementation of this scheme we refer to [10].

2. Time discretization. We discretize the time by backward Euler approxima-
tion of the time derivative ∂tu ∼ 1

τ
(u(ti)−u(ti−1)). In the literature this approach is

called Rothe’s method. We divide the time interval I into n subintervals Ii = [ti−1, ti]
of the same length τ = T

n
. Thus we get n elliptic problems:

1

τ
(ui − ui−1) + M · ∇(γ(ui)) − ∆(β(ui)) = 0, in Ω,(2.1)

ui(x)|∂Ω = 0.

The function ui−1 is a solution obtained from the previous time level. In the first
time level is u0 the initial condition.

3. Space discretization. We implement the space discretization in two ways:
by finite differences (FDM) and by finite elements (FEM).

3.1. FDM. First we use finite difference method on the mesh with constant grid
dh. We approximate the operator ∇(γ(u)) by symmetric difference M which can be
in 2D symbolically written as

M(u00) =
1

2 dh

(

γ(u+0) − γ(u−0)
γ(u0+) − γ(u0−)

)

.(3.1)

Later we use Up-Wind scheme, symbolically, if vector M has positive components:

M(u00) =
1

2 dh

(

γ(u+0) − γ(u00)
γ(u0+) − γ(u00)

)

.(3.2)

The operator ∆(β(u)) is approximated by 5-points rule:

L(u00) =
1

dh2

(

β(u+0) + β(u−0) + β(u0+) + β(u0−) − 4β(u00)
)

.(3.3)

As the solution is approximated by the values in grid points, we get discrete approx-
imation space

Vh = R
N ,(3.4)

where N is the number of grid points.

3.2. FEM. Let Th = {K} be the usual regular nonoverlapping finite element
triangulation of the domain Ω = ∪K∈Th

K. Let E = ∪N
i=1ni is the set of vertices of

the mesh. We define usual continuous linear finite element space

Vh = {uh ∈ H1
0 (Ω) : uh|K ∈ P1(K)}.(3.5)

Denote by φi piecewise linear continuous basis function associated with the vertex ni

of the mesh. The following holds true

φi(nj) = δij , i, j = 1 . . .N.(3.6)
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4. Nonlinear system of equations. After performing the space discretization
we obtain a nonlinear system of equations. The reason is, that the nonlinear (in a
space) problem was not linearized. Unknowns represent the approximated solution in
the space Vh. Therefore the problem can be reformulated as seeking the root of the
equation:

F (v) = 0, F : R
N → R

N .(4.1)

There are several numerical iterative methods used in order to find approximation
of the exact solution. We will be concerned with the iterative schemes of quasi-
Newton type. In [6] author introduces Broyden method for solving such systems. He
compares the efficiency of Broyden and well-known Newton-Kantorovich methods.
We use numerical implementation of this approach. Hereafter, we will denote all
inner iterations of these schemes by an upper index.

Broyden method. This method is based on the so-called Broyden’s update
formula for quasi-Newton iterations:

vk+1 = vk − B−1

k F (vk).(4.2)

In the Newton-Kantorovich we have Bk = F ′(vk). In Broyden method, Bk, k =
1, 2, ..., represent only approximations of the Jacobi matrix F ′(vk). If we denote

sk = vk+1 − vk, yk = F (vk+1) − F (vk),

then the Broyden’s update for a new approximation of the Jacobi matrix Bk+1 is
given by

Bk+1 = Bk +
yk − Bksk

‖sk‖2
sk

T .

Thanks to Sherman-Morrison formula (see [1]) we can directly compute B−1

k+1
if

B−1

k is known. That is the main advantage in comparison to solving systems using
Newton-Kantorovich method. No systems of linear equations with large matrices
must be solved.

Such a formula can be derived by following a nice geometric motivation discussed
in a more detail in a book by Allgower and Georg [1]. In this book one can also find a
proof of a local super-linear convergence of Broyden’s iterates to the root of (4.1). The
assumptions needed for the proof of a local super-linear convergence require closeness
of the initial iterate v0 and the root v∗. This requirement can be guaranteed by taking
v0 = vi−1 and assuming 0 < τ � 1.

5. Numerical experiments.

5.1. Implementation of FDM. We solve (1.1) in 2D on the square (0, 1) ×
(0, 1). We choose an initial condition shown in Fig. 5.2. We set the vector of convection
M = (200, 0), so the ”wind” blows strong from the east to the west. In this case we
consider no degeneration of convection, i.e. γ ≡ 1. While the convective term has been
approximated in a space by central difference, we have obtained some oscillations, see
Fig. 5.1. As soon as the central difference has been replaced by Up-Wind scheme,
oscillations have lost, see Fig. 5.2.

The next case discuss Burgers equation. The setting γ(s) = s2

2
yields to the well

known Burgers equation:

∂tu + uM · ∇(u) − ∆β(u) = 0.(5.1)
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There are results for the classic setting β(s) = s depicted in the Fig. 5.3. The value
of convective vector is M = (15000, 0). We consider also the generalization with the
setting β(s) = 0.005s3. The evolution of the solution can be seen in Fig. 5.4.
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Fig. 5.1. Evolution with oscillations.
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Fig. 5.2. Evolution without oscillations.
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Fig. 5.3. Burgers solution for β(s) = s.

5.2. Implementation of FEM. We use an adaptive hierarchical finite element
toolbox ALBERT produced by Alfred Schmidt and Kunibert G. Siebert. This package
has been described in details in [12]. The package had to be modified for this problem.
For the adaptation of the mesh we use bisection strategy for both refinement and
coarsening. We use a local estimator introduced by Verfürth in [13] for marking the
elements. Although the theoretical framework in [13] has been dedicated to quasi-
linear equations this estimator works for highly nonlinear problems as well. In Fig. 5.6
is depicted the adaptation of the mesh for the problem (1.1) with zero convective term:

∂tu − ∆(um) = 0.(5.2)

We will be mainly concerned with the case of slow diffusion i.e., m > 1. In this case
the support of initial data u0(x) (i.e., the closure of the set of x where u0(x) > 0)
propagates with finite speed (see [4]). It is desirable to locate the movement of the
interface. For the test purposes is very important the exact solution of (5.2) given
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Fig. 5.4. Generalized Burgers solution for β(s) = 0.005s3.
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Fig. 5.5. Semi-discrete error.

τ Error
0.100 0.106
0.075 0.099
0.050 0.073
0.044 0.071
0.038 0.065
0.031 0.054
0.025 0.046
0.019 0.041
0.012 0.039

Table 5.1

Semi-discrete error.

by Barenblatt in [4]. For comparing the exact ue and computed uc solution we have
used the following semi-discrete norm:

|ue − uc| =
1

Nτ

Nτ
∑

i=0

(
∫

Ω

(ue(ti) − uc(ti))
2

)
1

2

,(5.3)

where Nτ is the number of time steps in the interval I . The evolution of this error is
depicted in Fig. 5.5 and Tab. 5.1.

5.3. Graveleau’s exact solution. We consider the differential equation (1.1)
with zero convective term:

∂tu − ∆(um) = 0,(5.4)

where m > 1 is a constant. This equation describes the evolution of the density
u of ideal gas flowing through homogeneous porous media. The initial distribution
of the gas is outside of the compact domain and then it diffuses into this domain.
In the papers of Aronson [3] and Angenent [2] authors discuss both symmetric and
non-symmetric case. There exists an one-parametric family of solutions with respect
of radial symmetry. This family was first numerically found by Graveleau in [7] and
then was correctly described in [5].
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Fig. 5.6. The adaptation of the mesh in time 0s, 2s, 4s, 8s, 16s, 30s.
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Fig. 5.7. The evolution of Graveleau’s solution.

Let us denote v a new variable describing the pressure of the gas:

v =
m

m − 1
um−1.

In a radial symmetric case v(r, t) corresponds to transformed equation

∂tv = (m − 1)v(∂rrv +
d − 1

r
∂rv) + (∂rv)2,(5.5)

where d is a spatial dimension. We seek the solution in 〈0,∞)×(t0, T ) for such t0 ∈ R,
that

v(r, t0) = v0(r), r ∈ 〈0,∞),(5.6)

where v0 is given function fulfilling following assumption

v0(r) =

{

= 0 , r ∈ 〈0, a〉 ∪ 〈b,∞),
> 0 , r ∈ (a, b),

for some 0 < a < b < ∞. As the time rises from the value t = t0, the gas flows through
the boundary r = b outside and through the boundary r = a inside. Therefore, there
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exists a non-increasing function a(t) describing the translation of inner interface and
a non-decreasing function b(t) describing the translation of outer interface. The func-
tions a(t) and b(t) are characterized by the assumptions a(t0) = a, b(t0) = b, a(T ) = 0
and

v(r, t) =

{

= 0 , r ∈ 〈0, a(t)〉 ∪ 〈b(t),∞),
> 0 , r ∈ (a(t), b(t)),

for t ∈ 〈t0, T 〉.
Suppose T = 0 and therefore the initial time t0 is negative. There exists an

one-parametric family {gc(r, t)} of solutions equation (5.5) defined for

c ∈ R
+ and (r, t) ∈ 〈0,∞) × (−∞, 0〉.

Every solution covers the interior of the circle with radius a in time t = 0 (Graveleau’s
solution). There exists the numbers α∗(d, m) satisfying

2nd + 4

n(d + 2) + 4
< α∗(d, m) < Min

{

2,
2 + nd

d + 1

}

,

where n = m − 1. There exists γ(d, m) ∈ R
− such that for t < 0 is fulfilled

gc(r, t) = −r2t−1φ(cη),(5.7)

while φ > 0 on (γ, 0), φ = 0 on (−∞, γ〉 and

η = tr−α∗

.

Function φ = φ(η) is the solution of degenerate nonlinear ordinary differential equa-
tion

1

η2
φ −

1

η
φ′ =

1

η2
(2nd + 4)φ2

− α
1

η
(n(d + 2 − α) + 4) φφ′ + nα2φφ′′ + α2(φ′)2,(5.8)

with parameter α, solved on the interval (−∞, 0) with boundary conditions

φ(0) = 0, φ′(0) = −1.

While α < α∗ then φ > 0 on R
− and (5.7) is not satisfactory solution. There exists

γ ∈ R
− for α = α∗ such that φ > 0 on (γ, 0) and φ(γ) = 0. Finally, if we define φ = 0

on (−∞, γ), we obtain gc(r, t) convenient solution. In general the values α∗ must be
obtained numerically.

The solutions gc(r, t) fulfill the following condition:

gc(r, t0)

{

= 0 , r ∈ 〈0, a〉
> 0 , r > a.

We set the values of parameters as follows:

m = 3, d = 2, c = 1, t0 = −1.

Using the shooting method we have found the value of α∗(2, 3) = 1.25575. The
degenerate ordinary differential equation was solved by implementation of NDSolve
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Fig. 5.8. Initial condition.
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Fig. 5.9. Final state of Graveleau’s solution.

Graveleau’s solution
h τ.102 L2.102

0.30 0.500 1.38309
0.30 0.250 1.31533
0.30 0.167 1.29867
0.15 0.250 0.54166
0.15 0.167 0.49193

Table 5.2

Discrete L2 norm of the error.

solver in the Mathematicar package. We avoid the degeneration in 0 by setting
boundary conditions to

φ(−ε) = ε, φ′(ε) = −1.

The computed solution gc(r, t) of the equation (5.6) represents the pressure of the gas.
Backward transformation gives us the density u as a solution of the equation (5.4)
with initial condition

u(r, 0) =

(

m − 1

m
gc(r, 0)

)
1

m−1

.

In Fig. 5.7 is depicted the evolution of the profile of the solution. Tab. 5.2 shows
L2(Ω) norm of the difference between the exact and computed solution. The initial
condition and the final state of Gravaleau’s solution is depicted in Fig. 5.8 and 5.9.
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