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EXTENDING THE COX-ROSS-RUBINSTEIN ALGORITHM FOR

PRICING OPTIONS WITH EXPONENTIAL BOUNDARIES

MASSIMO COSTABILE ∗

Abstract. It is a common belief that the standard binomial algorithm of Cox-Ross-Rubinstein
(CRR) cannot be used to deal with barrier options with multiple or time-varying boundaries. We
propose an extension of the CRR model to evaluate options with exponential boundaries. The essence
of the extended binomial model relies upon the construction of a binomial tree for the underlying
asset price dynamics, characterized by sets of nodes that mirror the barriers evolution. As a result,
a very easy algorithm is derived that produces accurate prices with respect to the corresponding
continuous time values. Moreover, numerical results show that the performance of the extended
binomial algorithm is superior to that of the trinomial algorithms usually employed to price these
options.
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1. Introduction. In the traditional binomial method of Cox, Ross and Rubin-
stein (CRR) [4] for pricing European options, the underlying asset price dynamics is
modeled by a random walk. This means that, if S(t) = S is the asset value at time t
then, after one period, at time t+1, it can rise to uS or decrease to dS, where u and d
represent, respectively, the magnitude of one up step and the magnitude of one down
step. As a consequence, the underlying asset price evolution can be represented by a
binomial tree where each node corresponds to one possible value of the asset price.
The usual condition ud = 1 implies that the binomial tree is characterized by sets of
horizontal nodes.

In 1994 Boyle and Lau [2] pointed out that a näıve application of the traditional
CRR algorithm can lead to consistent bias in pricing options with one flat barrier.
The way to overcome this drawback is to build up a binomial tree with a set of nodes
that is as close as possible to the barrier and mirrors the barrier evolution. In this case
the problem of defining a binomial tree with a set of nodes that mimics the barrier
dynamics is solved automatically because the barrier is constant and we consider trees
with horizontal set of nodes. So we only need to choose a suitable number of steps in
price computations such that there exists one layer of the lattice as close as possible
to the barrier.

In the case of options with time-varying barriers, this approach fails because of the
fact that the sets of horizontal nodes in the binomial tree cannot mirror the barriers
evolution. As a consequence, the CRR algorithm computes consistently biased prices
that converge very slowly towards the corresponding values obtained in a continuous
time setting.

To overcome this problem a trinomial model has been proposed by Ritchken
[10] to evaluate barrier options both with one flat boundary and with more complex
boundaries of time varying and multiple type.

However the problem of pricing complex barrier options within a binomial setting
can be successfully tackled. In Costabile [3] a binomial algorithm has been proposed
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to deal with double barrier options. Here we present an extension of the CRR model
to price options with curved barriers. It is based on a binomial tree for the evolution
of the underlying asset price characterized by sets of nodes that mimic the barrier
dynamics. Relaxing the usual condition ud = 1 and choosing a particular size for the
magnitude of the up moves and down-moves of the asset price process, a binomial
tree is derived with layers of nodes that exactly mirror the moving time barriers. Fol-
lowing this way we construct a very simple algorithm that produces accurate prices
with respect to continuous time values illustrated in Zhang (1998). As in Lyuu(1998)
we compare the performance of the extended binomial algorithm with that of the
Ritchken trinomial tree based model. The conclusion is that the extended binomial
algorithm is clearly more efficient than the trinomial model in evaluating options with
curved boundaries.

The remainder of the paper is organized as follows. In Section 2 we illustrate
the problem of pricing options with an exponential boundary both in a continuous
time environment and in a discrete time one. In Section 3 we present the extended
binomial model to evaluate options with a single exponential boundary. In Section
4 we illustrate how the extended binomial algorithm can be used to evaluate double
barrier options. In Section 5 we analyze the performance of the extended binomial
algorithm with respect to that of the trinomial tree based model. In Section 6 we
draw conclusions.

2. The barrier option pricing problem. We consider a European down-and-
out call option with strike price K and time to maturity T , written at time t on an
asset with price S(t) = S. The option vanishes if the underlying asset price reaches
before expiration the barrier Heδτ (H < S, δ ∈ IR, 0 ≤ τ ≤ T ).

In a continuous time setting, under the usual assumptions of the Black-Scholes
analysis [1], the price of this option with K > Heδτ can be obtained, via the in-out
parity, as the difference between the value of a standard European call and the value
of a down-and-in European call with one exponential boundary (see Zhang [11])

DOCc = Cbs(S, K, T, r, σ) − (H/S)2v/σ2

Cbs(H
2/S, K, T, r, σ)(1)

where Cbs(S, K, T, r, σ) is the Black-Scholes formula for a standard European call
option, σ is the volatility of the underlying asset price process, r is the risk-free
interest rate (continuously compounded) and v = r − δ − σ2/2.

The most popular and diffused algorithm for pricing options in a discrete time
world is the CRR binomial method (Cox, Ross, Rubinstein [4]). According to this
model, at the end of each period, the underlying asset price rises by a factor u =
exp(σ

√
h) or decreases by a factor d = u−1, where h = T/n is the size of the time

interval between two successive jumps and n is the number of time steps used in
price computations. The probability of an up step is the risk-neutral probability
p = (exp(rh) − d)/(u − d) and the probability of a down step is q = 1 − p. In the
case of options with a time-varying barrier it is very difficult to derive a closed form
solution for the option price that, in general, is computed by solving the dynamic
programming equation

C(n,S(n)) = e−rh[pC(n + 1, uS(n))I(He(n+1)δh ,∞) + qC(n + 1, dS(n))I(He(n+1)δh ,∞)](2)

where C(n, S(n)) is the option price after n time steps from inception and I(Heδτ ,∞)

is the indicator function whose value is 1 if the underlying asset price is in the interval
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Table 1

The performance of the standard binomial algorithm in evaluating barrier options.

n δ = −0.05 δ = −0.1 δ = 0.05 δ = 0.1
25 8.849 8.979 7.013 6.750
50 7.447 7.787 6.918 6.355
75 7.249 7.745 6.178 5.724
100 7.609 7.917 6.517 5.837
150 6.974 7.488 6.255 5.676
200 7.365 7.681 5.887 5.335
300 6.849 7.366 5.993 5.444
400 6.926 7.323 6.037 5.398
500 6.862 7.329 5.851 5.317

DOCc 6.466 6.896 5.485 4.928

(Heδτ ,∞) and 0 otherwise.
Table 1 below shows the numerical results of the standard binomial algorithm for

pricing down-and-out European call options with an exponential boundary for differ-
ent values of the coefficient δ. The last row illustrates the corresponding continuous
time prices, DOCc, computed using formula (1). The parameters involved in price
computations are S = 95, K = 100, H = 90, σ = 0.25, r = 0.1, T = 1.

The performance of the standard binomial algorithm is very poor. Indeed, the
prices obtained with the CRR method present a consistent bias with respect to con-
tinuous time values and moreover the algorithm converges very slowly to the corre-
sponding continuous time values.

3. The extended binomial algorithm for pricing barrier options with a

curved boundary. As shown in Table 1, the performance of the standard binomial
algorithm for pricing European options with an exponential boundary is very poor.
The reason was implicitly given in Boyle and Lau [2]. Indeed, as they pointed out, a
näıve application of the CRR model, in general, produces consistently biased prices
for barrier options.

In the case of barrier options with one flat boundary the way to overcome this
drawback is to construct a binomial lattice with a set of nodes that mirrors the
barrier evolution and moreover it is as close as possible to the barrier. The first
condition is satisfied in the CRR model because it considers only sets of horizontal
nodes while the second one is satisfied by choosing a suitable number of time steps in
price computations.

Things are different if we consider barrier options with a time varying boundary.
In the CRR framework it is not possible to build up a binomial tree with sets of nodes
that mirror the barrier evolution. To do this we need to relax the usual condition
ud = 1. The strategy is the following: first, we set the magnitude of a down step equal
to d = exp(δh − σ

√
h). Second, we select a number of steps for price computation

such that, after a certain number, m, of successive down moves from inception, the
underlying asset price reaches the barrier. Third, we define the size of an up step in
a way that an entire set of nodes follows the barrier dynamics.

Let consider again the down-and-out European call option with the moving time
barrier, Heδτ , described in Section 2. The underlying asset price will touch the barrier
after m consecutive down steps from inception if Sdm = Hemδh, i.e.,

Sem(δh−σ
√

h) = Hemδh.(3)



26 M. COSTABILE

Recalling that h = T/n, we solve the above equation with respect to n and obtain,

n =
m2σ2T

log2(H/S)
.(4)

If we construct a binomial tree with n time-steps, after m successive down moves from
inception, the underlying asset price reaches exactly the exponential boundary. The
problem is that, in general, n is not an integer and so we consider a number of steps
n∗ = [n], where [x] denotes the largest integer smaller than or equal to x. It is worth
to notice that the value of the parameter δ doesn’t affect the number of steps to be
used in price calculations and, as a consequence, it is computed following the same
procedure proposed by Boyle and Lau in the case of options with one flat boundary.

The choice of n∗ as stated above guarantees that there exists a node of the tree
close to but just beyond the barrier. In order to define an entire set of nodes that
follows the barrier evolution, it suffices to impose that an up move followed by a down
move give rise to the same increment of the boundary value along a time interval of
length 2h. This is done by choosing the size of an up-step, u, such that

ud = e2δh,

i.e.,

u = eδh+σ
√

h.

The transition probabilities to be used in price computations are the risk-neutral
probabilities. In particular the probability of an up step is

p =
erh − d

u − d

and, obviously, the probability of a down step is q = 1 − p.
In order to derive a closed-form formula for pricing the European down-and-

out call option, we need to compute the number of trajectories that do not touch
the exponential boundary. To do this, we may use the reflection principle of Desiré
Andrè (see [6]) for a detailed description). The reflection principle is a combinatorial
method that allows us to compute, in a random walk setting with one absorbing
barrier, the number of trajectories of a particle that, after a certain number of time
steps, doesn’t touch the barrier. The reflection principle has been originally derived
for a particle that follows a symmetrical random walk with one flat boundary to solve
the ballot problem. The main feature of such a model is that the particle moves
in a binomial tree with layers of horizontal nodes that exactly mimic the barrier
evolution. The model presented here has the same structure because it considers
a particle moving in a binomial tree with sets of nodes that follow the boundary
dynamics. As a consequence, in this context the reflection principle can be applied
to count the number of trajectories of the particle that end to any node of the tree
without touching the exponential boundary.

Let Nn,j be the number of trajectories of the underlying asset price with j up
steps and (n − j) down steps. This number is given by the binomial coefficient

(

n
j

)

.

Let N t
n,j be the number of trajectories with j up steps and (n − j) down steps that

touch or cross the curved boundary. Let m be the number of successive down steps
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for the underlying asset price at inception to touch or cross the barrier. Applying the
reflection principle we find that

N t
n,j =

(

n

j + m

)

.

As a consequence, the number of trajectories with j up-steps and n − j down-steps
that do not touch or cross the exponential barrier is

Nnt
n,j =

(

n

j

)

−
(

n

j + m

)

.

The reflection principle allows us to derive the following closed form formula for pricing
the down-and-out call option with the exponential boundary described before,

DOCb = e−rT
n

∑

j=a

Nnt
n,jp

jqn−j(Sujdn−j − K)(5)

where a is the minimum number of up steps that the underlying asset price must make
for the option to be in the money at maturity, and is equal to the smallest integer
greater than

log(K/Sdn)

log(u/d)
.

The possibility of using the reflection principle in computing option prices is
very important from a computational point of view. Indeed, it allows us to derive
a closed form solution and, as a consequence, to consider only the nodes of the tree
corresponding to the option values at maturity. The binomial algorithm described
above generalizes the approach of Boyle and Lau [2]. Indeed, if we consider options
with one flat boundary (δ = 0), the evaluation formula (5) reduces to that of Cox,
Ross and Rubinstein adapted to barrier options as proposed by Boyle and Lau.

Moreover, the extended binomial algorithm can be easily modified to price all
kinds of knock-in and knock-out options with one exponential boundary.

4. The extended binomial algorithm for pricing double barrier options.

In Section 3 we illustrated the extended binomial algorithm for pricing single barrier
options with an exponential boundary. In this section we show that the extended
binomial algorithm can be used to evaluate options with two parallel moving time
barriers. A double barrier option is an option that is activated (knock-in) or expires
(knock-out) if the underlying asset price reaches before maturity an upper boundary
or a lower one.

We consider a double knock-out European call option with time to maturity T ,
written at time t on an asset with price S(t) = S. The upper exponential boundary
is Ueδτ (U > S, δ ∈ IR, 0 ≤ τ ≤ T ) and the lower one is Heδτ (H < S, δ ∈ IR, 0 ≤
τ ≤ T ). As before, K is the strike price, σ is the volatility and r is the continuously
compounded risk-free interest rate.

In order to evaluate such option we build up a binomial tree with a set of nodes
as close as possible to the lower barrier and a set of nodes as close as possible to the
upper barrier. Moreover, the entire tree is made up of sets of nodes that follow the
boundaries dynamics. To do this we first fix the magnitude of an up step, u, equal to

eδh+σ
√

h and the magnitude of a down step, d, equal to eδh−σ
√

h. A node of the tree
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will lie exactly on the upper barrier after m1 consecutive up steps of the underlying
asset price from inception if

Sum1 = Uem1δh.

Recalling that h is the size of each time step, the above condition requires to select a
number of time steps for the binomial tree equal to

f(m1) =
m2

1σ
2T

log2(U/S)
.

In general f(m1) is not an integer and so we consider [f(m1)], the largest integer
smaller than f(m1). If we construct a binomial tree with [f(m1)] time steps, there will
be a node of the tree just above the upper boundary. Following the same procedure,
a node of the tree will lie on the lower boundary after m2 consecutive down steps of
the underlying asset price from inception if

Sdm2 = Hem2δh.

This means that, in order to have a tree with a node just below the lower boundary,
we need to select the number of time steps equal to the largest integer smaller than

f(m2) =
m2

1σ
2T

log2(H/S)
.

In general [f(m1)] and [f(m2)] can be expressed as functions of m1 and m2.
Among the different values of m1 and m2, we need to select those such that [f(m1)] =
[f(m2)]. The common value [f(m1)] = [f(m2)] represents the number of steps, n∗, to
be used in price computations.

As we will see later, it may happens that we cannot find values of m1 and m2

such that [f(m1)] = [f(m2)]. When this happens, we choose m1 and m2 in such a
way that the absolute difference |[f(m1)]− [f(m2)]| is as small as possible. After this,
we set the number of steps for options evaluation equal to the minimum of [f(m1)]
and [f(m2)]. The numerical results show that this circumstance doesn’t affect in a
significant way the precision of the evaluation method.
Once we select the number of time steps to be used in price computations in such
a way that there exists a node of the tree as close as possible to the upper barrier
and a node of the tree as close as possible to the lower one, the condition ud = e2δh

ensures that the binomial tree is made up of set of nodes that mirror the boundaries
dynamics.

In order to develop a closed form formula to evaluate a double knock-out European
call we need to count the number of trajectories, Nnt

n,j , with j up steps and (n−j) down
moves not touching neither the upper not the lower barrier. This can be done using
repeatedly the reflection principle of Desiré Andrè (see [3] for a detailed description).
Following this way, the pricing formula is

DKOUT = e−rT

β
∑

j=α

Nnt
n,jp

jqn−j max[Sujdn−j − K, 0]

where α is the minimum number of up-steps that the underlying asset price must
make to be above the lower boundary at maturity, and is equal to the smallest integer
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greater than

n

2
+

log(H/S)

2σ
√

h
.

In the same way β is the maximum number of up steps that the underlying asset price
must make to be below the upper barrier at maturity, and is equal to the greatest
integer smaller than

n

2
+

log(U/S)

2σ
√

h
.

5. Numerical results. In general, lattice models for options evaluation are de-
fined in such a way that the first k moments of the discrete time distribution of the
underlying asset price match the first k moments of the corresponding continuous
time distribution of the underlying asset price. For example, in the case of binomial
and trinomial models k = 2, in quadrinomial models k = 3 and so on.

In a risk-neutral environment, under the usual assumption of the Black-Scholes
analysis, the underlying asset price is lognormally distributed and, after a time in-
terval of length h, the first order moment is Serh and the second order moment is
S2e(2r+σ2)h.

For the extended binomial algorithm, the matching of the first order moment gives

pu + qd = erh.(6)

The choice of a risk-neutral probability measure guarantees that the condition (6) is
satisfied. The matching of the second order moment gives

pu2 + qd2 = e(2r+σ2)h,(7)

i.e.,

erh − eδh−σ
√

h

eδh+σ
√

h − eδh−σ
√

h
e2δh+2σ

√
h +

eδh+σ
√

h − erh

eδh+σ
√

h − eδh−σ
√

h
e2δh−2σ

√
h = e(2r+σ2)h(8)

Expanding the exponential in Taylor series, and ignoring terms of order h2 and higher,
we can easily check that the second order moment of the discrete distribution of the
underlying asset price is 1 + 2rh + σ2h and it matches the second order moment of
the lognormal random variable.

However, matching the first and the second order moments of the discrete time
and continuous time distributions of the underlying asset price does not assure, in gen-
eral, the convergence of the prices computed with the discrete time algorithm towards
the corresponding values obtained in a continuous time setting. The convergence of
the extended binomial algorithm can be easily proved following the same procedure
illustrated in [4] to prove the convergence of the CRR algorithm to the continuous
time values for a standard European option.

Numerical results of the extended binomial algorithm for pricing barrier options
with an exponential boundary are shown in Table 2. We compute the prices of Euro-
pean down-and-out call options, DOCb, with the same parameters specified in Section
2. At the beside of each price, the computation time (in milliseconds) is reported.
In the last row the prices obtained with the continuous time formula (1) are shown.



30 M. COSTABILE

Table 2

The extended binomial algorithm for option with an exponential boundary

δ = −0.05 δ = −0.1 δ = 0.05 δ = 0.1

m n∗ DOCb time DOCb time DOCb time DOCb time
1 21 6.5543 0.08 6.9444 0.07 5.5451 0.07 4.9667 0.07
2 85 6.4909 0.38 6.9199 0.34 5.5037 0.33 4.9402 0.32
3 192 6.4738 0.864 6.9040 0.814 5.4906 0.811 4.9322 0.798
4 342 6.4686 1.548 6.8996 1.537 5.4863 1.532 4.9283 1.514
5 534 6.4696 2.425 6.8978 2.228 5.4876 2.219 4.9296 2.197
6 769 6.4684 3.501 6.8984 3.477 5.4878 3.416 4.9295 3.869
7 1047 6.4676 4.784 6.8983 4.648 5.4871 4.227 4.9289 4.148
8 1368 6.4672 6.267 6.8971 6.124 5.4860 6.018 4.9282 6.001
9 1731 6.4671 7.934 6.8973 7.826 5.4866 7.759 4.9286 7.658
10 2138 6.4664 9.814 6.8961 9.629 5.4855 9.487 4.9277 9.382
15 4810 6.4662 22.121 6.8963 22.001 5.4856 21.916
18 6927 6.4660 31.867 6.8963 31.436 5.4854 30.992
20 8552 6.4660 39.442 6.8961 39.252
26 14453 6.4660 66.781 6.8962 66.614
31 20546 6.4659 95.062

DOCc=6.4659 DOCc=6.8962 DOCc=5.4854 DOCc=4.9277

The computations were performed on a personal computer equipped with a 400MHz
Pentium II processor and 128 MB of RAM.

As in Lyuu (1998), in order to evaluate the performance of the extended bino-
mial algorithm, we compare the prices obtained in the binomial setting with those
computed with the trinomial algorithm proposed by Ritchken (1995), illustrated in
Table 3. We compute the prices, DOCt, and the corresponding computation times
for different values of the parameter m that, as in the binomial setting, represents the
minimum number of successive down steps of the underlying asset price at inception
to touch or cross the lower boundary.

Numerical results show that the extended binomial algorithm is clearly more ef-
ficient than the corresponding trinomial tree based algorithm. Indeed, for all the
options considered, the extended binomial algorithm converges faster than the trino-
mial one to the corresponding analytical values. For example, for the down-and-out
call option with the exponential barrier characterized by the parameter δ = 0.1, the
extended binomial algorithm reaches the analytical value of 4.9277 after 2138 time
steps and 9.382 milliseconds while the trinomial algorithm after 500 time steps and
582.08 milliseconds still gives an error of 0.002%. The same considerations can be
extended to all the options considered in Table 2 and in Table 3.

In Table 4 we illustrate the numerical results of the extended binomial algorithm
in the case of European down-and-out call options when the underlying asset price at
inception is near the boundary. It is well known that when the current underlying asset
price is close to the boundary it is much more complicated for a discrete time algorithm
to achieve the convergence to the corresponding continuous time values. Again, as for
barrier options with a flat boundary, the extended binomial algorithm is very efficient
and produces accurate prices. In, particular, we consider the same options illustrated
in Table 2 with a lower barrier Heδτ and H = 94.9. For all the options considered,
the extended binomial model reaches the corresponding analytical value after 56346
time steps and a maximum computation time of 261.522 milliseconds.

Table 5 illustrates the numerical results of the extended binomial algorithm for
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Table 3

The trinomial algorithm for options with an exponential boundary

δ = −0.05

m = 1 m = 2 m = 3 m = 4
n DOCt time DOCt time DOCt time DOCt time
50 6.4645 1.684
100 6.4579 9.671 6.4699 9.977
200 6.4546 49.32 6.4666 50.25 6.4683 51.23
300 6.4535 161.82 6.4655 164.53 6.4672 166.75
400 6.4529 322.34 6.4650 326.71 6.4667 331.43 6.4671 335.69
500 6.4526 567.33 6.4647 571.44 6.4664 576.32 6.4668 580.25

δ = −0.1

m = 1 m = 2 m = 3 m = 4
n DOCt time DOCt time DOCt time DOCt time
50 6.8959 1.706
100 6.8920 9.748 6.8994 9.986
200 6.8900 49.93 6.8974 50.61 6.8978 51.74
300 6.8894 162.33 6.8968 165.46 6.8972 169.04
400 6.8891 324.13 6.8965 327.05 6.8968 331.96 6.8966 336.04
500 6.8889 568.29 6.8963 572.07 6.8967 576.83 6.8964 581.10

δ = 0.05

m = 1 m = 2 m = 3 m = 4
n DOCt time DOCt time DOCt time DOCt time
50 5.4833 1.786
100 5.4795 9.766 5.4868 10.039
200 5.4776 50.26 5.4850 50.84 5.4863 52.04
300 5.4769 163.01 5.4843 165.84 5.4856 169.47
400 5.4766 325.29 5.4840 327.91 5.4853 332.22 5.4858 337.46
500 5.4764 569.19 5.4838 573.53 5.4851 577.61 5.4856 581.51

δ = 0.1

m = 1 m = 2 m = 3 m = 4
n DOCt time DOCt time DOCt time DOCt time
50 4.9267 1.791
100 4.9270 9.873 4.9273 10.065
200 4.9271 50.61 4.9274 51.27 4.9275 52.34
300 4.9272 163.81 4.9275 166.07 4.9275 170.24
400 4.9272 326.29 4.9275 328.00 4.9275 332.95 4.9276 338.08
500 4.9272 569.71 4.9275 573.94 4.9276 577.96 4.9276 582.08

pricing double knock-out barrier options with parallel exponential boundaries. The
parameters involved in price computations are S = 95, K = 100, H = 70, U = 120,
σ = 0.25, r = 0.1, T = 1 and different values of the coefficient δ. For all the options
considered the computation times were below 2 seconds. The last row illustrates
the corresponding continuous time prices (ki) computed using the Kunimoto-Ikeda
algorithm (1992). Again, numerical results show that the extended binomial algorithm
is an efficient tool to evaluate complex barrier options.

6. Conclusions. We propose an extension of the standard CRR model for pric-
ing complex barrier options with time-varying or multiple boundaries. The model is
based on a binomial tree for the underlying asset dynamics with sets of nodes that
exactly mirrors the barriers evolution. As a result, we define a very simple algorithm
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Table 4

The extended binomial algorithm when the asset price is near the barrier

δ = −0.05 δ = −0.1 δ = 0.05 δ = 0.1

m n∗ DOCb time DOCb time DOCb time DOCb time
1 56346 0.1901 261.522 0.1708 261.047 0.1320 259.487 0.1126 259.371

DOCc=0.1901 DOCc=0.1708 DOCc=0.1320 DOCc=0.1126

Table 5

The extended binomial algorithm for double knockout barrier options

δ = −0.05 δ = −0.1 δ = 0.05 δ = 0.1
m1 m2 [f(m1)] [f(m2)] n∗ DKOUT DKOUT DKOUT DKOUT
13 17 193 193 193 0.3161 0.0796 1.4126 2.2352
16 21 293 295 293 0.3261 0.0909 1.4350 2.2621
23 30 605 603 603 0.3271 0.0835 1.4289 2.2596
26 34 774 774 774 0.3235 0.0846 1.4169 2.2512
36 47 1484 1480 1480 0.3268 0.0863 1.4268 2.2613
39 51 1741 1743 1741 0.3242 0.0849 1.4234 2.2558
52 68 3096 3098 3096 0.3256 0.0856 1.4231 2.2559
88 115 8868 8863 8863 0.3270 0.0863 1.4258 2.2583
127 166 18470 18467 18467 0.3262 0.0861 1.4244 2.2567

ki=0.3262 ki=0.0861 ki=1.4242 ki=2.2564

that produces accurate prices with respect to the corresponding continuous time val-
ues. Moreover, numerical results show that the extended binomial algorithm is more
efficient than the usual trinomial algorithm (Ritchken (1995)) employed to evaluate
such options.
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