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EFFICIENT SIMULATION OF MULTI-DIMENSIONAL

DETONATION PHENOMENA∗
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Abstract. The paper presents a solution strategy for Euler equations for multiple thermally
perfect gaseous species with detailed chemical reaction. Via operator-splitting a high-resolution
finite-volume scheme and a stiff ODE solver are coupled. A parallel blockstructured adaptive mesh
refinement algorithm is utilized to achieve the required local resolution. A highly resolved com-
putation of regular detonation-cell patterns of the hydrogen-oxygen-argon system demonstrates the
efficiency of the entire approach.
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1. Introduction. The incorporation of reactive source terms into hydrodynamic
gaseous flow introduces a wide range of new non-neglectable temporal and spatial
scales. In Fig. 1.1 a typical self-sustaining Chapman-Jouguet detonation wave is
displayed. It travels at a constant super-sonic speed of 1627 m/s, but 99 % of the fuel
is burned 13µs after being ignited by the leading shock wave. Fig. 1.1 visualizes
the characteristic substructure of a detonation with a hydrodynamic shock followed
by a region of decaying continuous burning. The shock initiates the reaction, but
it takes an induction time of about 0.6µs until the reactants start to burn rapidly
to the constant equilibrium state. Therefore shock and flame in fact are separated
by a distance of ≈ 1.4 mm and numerical simulations usually do hard to resolve
this induction zone sufficiently. Especially multi-dimensional simulations are very
challenging and require integrated approaches that combine accurate discretizations
with sophisticated technics from computer science.

In this paper we present an efficient solution strategy for the Euler equations
for mixtures of thermally perfect gases with detailed reactive source terms. Hydro-
dynamic transport and chemical reaction are treated successively with an operator-
splitting approach. The description of the physical model in Section 2 is followed
by the presentation of the different numerical schemes in Section 3. A parallel vari-
ant of the blockstructured adaptive mesh refinement algorithm by Berger and Oliger
(AMR) is described in Section 4. The choice of a robust high-resolution upwind
scheme, properly adjusted adaption criteria and an efficient parallelization strategy
tailored for AMR allow simulations with remarkable high resolution. As a large-scale
example a simulation of regular detonation-cell patterns of the H2:O2:Ar-system in
two space dimensions is presented in Section 5. The results are of highest quality
and can serve as a reference. Analogous simulations in three space dimensions are
currently carried out by the author, but are not included into this paper. The results
will be presented elsewhere.

Successful simulations on uniform cartesian meshes of the example of Section 5
with detailed chemical reaction were presented for the first time by E. S. Oran et at
in [9]. To reduce the extraordinary costs of uniform computations T. Geßner applied
an unstructured adaption strategy [5]. C. A. Eckett employed a serial version of
the blockstructured AMR-algorithm of Berger and Oliger, but used only significantly
reduced chemical reaction models [4].
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Figure 1.1. Chapman-Jouguet detonation for a stoichiometric H2:O2-mixture (molar ratio
2 : 1) diluted with 70 % Ar at 298 K. At the x-axis the distance in the downstream direction in cm to
the detonation front is displayed. Left: Density distribution and dynamically adapted computational
grid utilizing the adaption criteria of Section 5.3. Right: Mass fractions Yi of reactants H2, O2 and
of main reaction product H2O.

2. Governing equations. We consider the Euler equations in cartesian coor-
dinates in two space dimensions with chemical reactive source terms [13].

2.1. Generalized Euler equations. Conservation of mass ofK different gaseous
species, conservation of momentum and of total energy gives

∂t ρi + ∂x(ρiu) + ∂y(ρiv) = Wi ω̇i i = 1, . . . ,K

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) = 0

∂t(ρv) + ∂x(ρuv) + ∂y(ρv2 + p) = 0

∂t(ρE) + ∂x [u(ρE + p)] + ∂y [v(ρE + p)] = 0 .

(2.1)

For the total density ρ =
∑

ρi holds, where ρi are the partial densities. The ratios
Yi = ρi/ρ are called the mass fractions. Note, that

∑

Yi = 1 holds true. Chemi-
cal production rate and molecular weight of each species are denoted by ω̇i and by
Wi, respectively. The velocities in x- and y-direction are u and v, p is the total
hydrodynamic pressure and E is the total energy per unit mass.

Under the assumption of thermal equilibrium1 the total pressure p is given by
Dalton’s law as p =

∑

pi = RT
∑

ρi/Wi. Each species is assumed to be thermally
perfect with a temperature-dependent specific heat cpi(T ).2 The enthalpies per unit
mass are written as

hi(T ) = h0
i +

∫ T

0

cpi(s)ds .

For the enthalpy of the mixture h(T ) =
∑

Yi hi(T ) holds. Inserting this into the
thermodynamic relation ρh− p− ρe = 0 and applying the above equation for p reads

K
∑

i=1

ρi hi(T ) −RT

K
∑

i=1

ρi

Wi
− ρE +

ρ

2

(

u2 + v2
)

= 0 . (2.2)

Computation of the temperature T from the conserved quantities utilizing the implicit
relation (2.2) is unavoidable whenever the pressure p has to be evaluated. Like in
the standard case of a single polytropic gas the local frozen speed of sound is given
by c2 = γ p/ρ. It may be calculated by applying the basic relations Yi = ρi/ρ ,

cp =
∑

Yi cpi, W = (
∑

Yi/Wi)
−1 and γ =

cp
cp −R/W

.

1The same temperature T can be used for all K species.
2The functions cpi(T ) are usually approximated by polynoms of degree 4 and can be taken from

thermodynamic data bases.
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2.2. Reaction mechanisms. The chemical production rates ω̇i(ρ1, . . . , ρK , T )
are derived from a reaction mechanism that consists of M chemical reactions

K
∑

i=1

νf
jiSi 


K
∑

i=1

νr
jiSi j = 1, . . . ,M ,

where νf
ji and νr

ji are the stoichiometric coefficients of species Si appearing as a reac-

tant and as a product. The forward reaction rate kf
j (T ) of each reaction is calculated

by the Arrhenius law
kf

j (T ) = AjT
βj exp(−Ej/RT ) (2.3)

and the corresponding backward reaction rate may be derived from the equilibrium
constant Kc

j (T ) by kr
j (T ) = kf

j (T )/Kc
j (T ) [13]. The production rate of species Si is

now given by

ω̇i =

M
∑

j=1

(νr
ji − νf

ji)

[

kf
j

K
∏

n=1

( ρn

Wn

)νf
jn

− kr
j

K
∏

n=1

( ρn

Wn

)νr
jn

]

i = 1, . . . ,K . (2.4)

A chemical kinetics package (e.g. Chemkin) is usually utilized to compute (2.3)-(2.4)
according to the particular reaction mechanism and given thermodynamic data.

3. Numerical methods. The generalized Euler equations (2.1) define a sys-
tem of conservation laws of the form qt + f(q)x + g(q)y = ψ(q). We apply fractional
step methods for the solution of the multi-dimensional homogeneous transport equa-
tions and for incorporation of reactive source terms. The one-dimensional transport
equations

qt + f(q)x = 0 , IC: Qn ∆t
=⇒ Q̃1/2

qt + g(q)y = 0 , IC: Q̃1/2 ∆t
=⇒ Q̃

(3.1)

and the usually stiff system of ordinary differential equations

qt = ψ(q) , IC: Q̃
∆t
=⇒ Qn+1 (3.2)

are solved successively. Intermediate steps use the result from the preceding step as
initial condition (IC).

The advantage of this successive application of splitting methods is that the entire
method only requires two analogue one-dimensional transport schemes and a stan-
dard stiff ODE solver. The extension to three dimensions is obvious. Although the
method (3.1)-(3.2) is formally only first-order accurate it usually gives very satisfac-
tory results, if high-resolution upwind schemes are employed. Second-order accurate
extensions with additional intermediate steps are possible [11], but they usually lead
to similar results in most practical cases. Due to the analogy of the update steps
in the coordinate directions the following description of van Leer’s upwind scheme is
restricted to the first step of (3.1).

3.1. Van Leer scheme. A standard conservative finite-volume discretization

Qn+1
j = Qn

j − ∆t/∆x
(

F (Qn
j+1, Q

n
j ) − F (Qn

j , Q
n
j−1)

)

is utilized to integrate the first equation of (3.1). A straight-forward calculation
shows that the eigenvalues of the Jacobians of the flux function f(q) are u− c, u and
u + c. These are the same eigenvalues as in the standard case of a single polytropic
gas. Therefore the homogeneous transport equations are hyperbolic. Various upwind
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schemes that have been originally developed for standard Euler equations have been
extended successfully to the generalized case of thermally perfect gas-mixtures [8].

In our numerical investigations we have found that especially van Leer’s flux
vector splitting combined with second-order MUSCL reconstruction is a good choice.
It is comparably robust, easy to implement and avoids negative partial densities ρi

by definition [7].
The flux vector splitting approach uses F (Qj+1, Qj) = F (Qj)

+ + F (Qj+1)
− to

approximate the inter-cell flux. In case of van Leer’s scheme for mixtures of thermally
perfect gases F (Q)± is calculated as follows [10, 8]:

F (Q)± = ±
ρ

4c
(u± c)2









Yi

u− (u∓ 2c)/γ
v

H − ζ(u∓ c)2









H = h+
1

2
(u2 + v2)

ζ =
h/c2

1 + 2h/c2

if |u| < c

F (Q)+ = F (Q), F (Q)− = 0 if u ≥ c and F (Q)− = F (Q), F (Q)+ = 0 if u ≤ −c

Note that the stability condition of this scheme is

Ccfl ≡
∆t

∆x
(|u| + c) ≤







2γ + u(3− γ)/c

γ + 3
if |u| < c

1 otherwise .

We apply the MUSCL-Hancock variable reconstruction technique (see [11] for a
detailed description) to the primitive variables Yi, ρ, u, v, p to achieve second-order
accuracy in smooth solution regions.

3.2. ODE integration. After each transport step the ODE system

∂t ρi = Wi ω̇i(ρ1, . . . , ρK , T ) i = 1, . . . ,K

is integrated within each grid cell to incorporate the reactive source terms. ODE
systems that arise in chemical kinetics are usually stiff and we employ a semi-implicit
Rosenbrock-Wanner method by Kaps and Rentrop of fourth order with automatic
step-size adjustment [6]. Note that ρ, e, u, v are assumed to be constant during
ODE integration and in each grid cell the chemical kinetics are computed like in the
zero-dimensional constant volume adiabatic case.

3.3. Computation of the temperature. Whenever the temperature T has
to be calculated from the conserved variables the implicit equation (2.2) is solved
utilizing Newton’s method. The iteration is initialized with the temperature value of
the preceding time step.3

4. Adaptive mesh refinement. In order to achieve the required temporal and
spatial resolution the blockstructured adaptive mesh refinement algorithm of Berger
and Oliger is applied [2]. We have implemented this algorithm in a generic, dimension-
independent object-oriented framework in C++. It is called AMROC (Adaptive Mesh
Refinement in object-oriented C++) and is free of charge for scientific use. An efficient
parallelization strategy especially tailored for distributed memory machines has been
found and the codes can be executed on all high-performance computers that provide
the MPI-library.

3Note that the solution of (2.2) is only unique within the valid temperature-range of the approx-
imating polynoms for cpi(T ).
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Figure 4.1. Left: Recursive integration order of AMR. Right: Sources of ghost cell values.

The adaptive algorithm has been realized completely decoupled from a particular
finite-volume method. All what the algorithm requires is an equation-specific time-
explicit scheme for hyperbolic conservation laws for a single rectangular grid. For the
example of Section 5 this single-grid scheme is implemented exactly as described in
Section 3.

4.1. Berger-Oliger AMR-method. Instead of replacing single cells by finer
ones the AMR-method follows a patch-wise refinement strategy. Cells being flagged
by various criteria, e.g. error estimators, are clustered into rectangular boxes of appro-
priate size. They describe refinement regions geometrically and subgrids with refined
mesh spacing in space and time are generated according to them. Refined grids are
derived recursively from coarser ones and an entire multi-level hierarchy of succes-
sively embedded grid patches is therefore constructed. All grid patches are logically
rectangular and the adaptive algorithm calls the equation-dependent single-grid rou-
tine during a loop over all subgrids of the entire level (see function IntegrateLevel(l)
in Fig. 4.2).

It is important to note, that refined grids overlay the coarser subgrids from which
they have been derived. Values of cells covered by refined subgrids are overwritten by
averaged fine grid values subsequently. The resulting extra work is usually negligible
compared to the computational costs for integrating the superimposed refinement
grids.

i

k

i+ 1

j
m

Replacing coarse cell values by averaged fine grid val-
ues modifies the numerical stencil on the coarse grid. In
general the important property of conservation is lost. A
flux correction replacing the coarse grid flux at the af-
fected side of a neighboring cell by accumulated fine grid
fluxes is necessary to ensure conservation. In two and
three space dimensions hanging nodes additionally have
to be considered.

Example: Flux correction in cell i+ 1, j of level l

Qn+1
i+1,j := Qn+1

i+1,j −
∆tl
∆xl



F l
i+1/2,j −

1

∆yl rl+1

∆tl
∑

{∆tl+1}

rl+1−1
∑

p=0

F l+1

k+1/2,m+p ∆yl+1
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IntegrateLevel(l) - Integrate all grids on level l

Repeat rl times
Set ghost cells of level l at time t

If (time to regrid?) Then
Regrid(l)

Step ∆tl on all grids at level l

If (level l + 1 exists?) Then
Set level l ghost cells at t + ∆tl

IntegrateLevel(l + 1)
Average level l + 1 grids onto level l

Regrid(lfix) - Regrid all levels l > lfix

For l=lmax Downto lfix Do
Flag cells for refinement on level l

Find proper new grids on level l

Reorganize whole hierarchical data

Start - Start integration on root level
l = 0, r0 = 1
IntegrateLevel(l)

Figure 4.2. Pseudo-code of the AMR-algorithm. Refinement factor on level l is rl = ∆tl−1/∆tl.

The application of refined time-steps on finer subgrids as displayed in Fig. 4.1 is
an important difference of the AMR approach in comparison to usual unstructured
adaptive strategies. By applying the same refinement factor in time as in space Ccfl

in principle remains unchanged on refined subgrids.

4.2. Parallelization. A natural parallelization strategy of the AMR-method re-
lies on the use of auxiliary (ghost) cells around a subgrid for the setting of boundary
conditions. The use of ghost cells allows a successive treatment of all kind of bound-
aries and eliminates the handling of boundary conditions from the single-grid solution
routine. The ghost cells of all subgrids on level l are set in the following order (see
right picture of Fig. 4.1):

1. Time-space interpolation at internal boundaries from level l − 1.
2. Synchronization with neighboring subgrids of level l transparently even over

processor borders.
3. Application of physical boundary conditions.

Distribution of subgrids to processors is carried out under the restriction that
higher level data must reside on the same computing node as the coarsest level data.
The coarsest level defines the ”floor-plan” of the entire hierarchy. This distribu-
tion strategy ensures that almost all computational operations of the parallel AMR-
algorithm, like time-space interpolation and averaging onto the coarser levels, remain
strictly local.

A further advantage of this approach is that partitioning based on the accumu-
lated workload of all levels only has to take place on cells of the coarsest level. Note
that the partitioning algorithm has to be extraordinarily fast, because it is executed
at the end of each Regrid(l)-operation whenever the hierarchy has to be reorganized
in a load-balanced manner (see Fig. 4.2). For the following computational example
a generalization of the Peano-Hilbert space-filling curve has been used as an efficient
partitioner [1].

5. Simulation of a planar detonation with transverse waves. Experi-
ments have shown that self-sustaining detonation waves are locally multi-dimensional
and nonsteady. Triple-points may form, which enhance the local chemical reaction
significantly. Equilibrium-configurations with regular detonation cells have been ob-
served in particular cases. We employ a relatively simple hydrogen-oxygen mechanism
from [12]. It consists of 34 elementary reactions for the 9 species H, O, OH, H2, O2,
H2O, HO2, H2O2, Ar.

5.1. Initial and boundary conditions. The one-dimensional Chapman-Jouguet
detonation of Section 1 is calculated with very high accuracy and is extended to a pla-
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Figure 5.1. The computational domain has the size 62 cm × 3 cm. The leading shock of the
CJ-detonation is placed at x = 4.6 cm. The center of the unreacted pocket is at x = 3.8 cm.

Figure 5.2. Time history of released chemical energy at t = 260 µs. Regular detonation-cells
with a width of ≈ 5.3 cm are visible.

nar detonation in the x-direction on a two-dimensional grid.4 Computational domain
and boundary conditions are shown in Fig. 5.1. Following [9] transverse disturbances
are initiated by placing an unreacted pocket of 10 mm×7 mm at 2086 K at a distance
of 3 mm behind the detonation front. The computation is stopped at tend = 350µs
when the detonation approaches the right boundary.

5.2. Physical explanation. A shock emanating from the burning of the unre-
acted pocket behind the detonation initiates a triple-point when it hits the heading
shock front. The triple-point heats the unreacted gas to a temperature about 500 K
higher than the incident shock of the CJ-detonation. The induction time is signifi-
cantly shortened and reduces the distance between flame (or fire) and leading shock
(see Fig. 5.3). The local energy release near the triple-point is considerably higher
than behind the undisturbed incident shock. The accumulated chemical energy re-
lease over the whole simulation time can therefore be utilized in Fig. 5.2 to visualize
all triple-point movements.5 The triple-point takes energy from the detonation wave
and reduces its propagation velocity. It disturbs the perfect balance between re-
leased chemical and kinetic energy. After about 100µs the increasing mismatch leads
to the formation of new triple-point. With this additional triple-point our particu-
lar configuration quickly reaches a nonsteady equilibrium configuration with regular
detonation-cells.

5.3. Adaptive simulation. A grid of 620 × 20 cells is selected as the base
grid. 1044 time-steps on this base grid are calculated to reach tend = 350µs. Three
refinement levels with refinement factors 2, 4 and 4 are employed. This corresponds
to a resolution of ≈ 44 cells within the induction length of the CJ-detonation. A
similar uniformly refined simulation would require 19840 × 640 = 12.700.000 cells.
Note that the transverse waves would fade away quickly, if no sufficient resolution in
the induction zone would be supplied.

While an appropriate adaption to the discontinuous shock waves can easily be
achieved, for instance by scaled gradients |Qn

i+1 − Qn
i | of pressure and density, an

efficient adaption within the smooth flow regions with significant chemical reaction is
harder. We have successfully applied a criterium that estimates the error of the mass
fractions Yi heuristically. It is based on Richardson extrapolation and is implemented
with the aid of a coarser mesh. The actual solution Qn is advanced one time-step

4A detonation in a combustible mixture may be initiated by a spark that can easily be modeled
by a heat source in the energy equation or by a sufficiently strong shock wave [3]. Every detonation
of real chemistry will invariably converge against the Chapman-Jouguet limit, which is determined
by the state of the unburned gas [13].

5The released chemical energy ε is calculated cell-wise as the sum of enthalpy changes during the

entire computation as ε =
∑

{∆t}

(ρh)n−1
− (ρh)n.
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Figure 5.3. Left: Isolines of density on refinement grids show the dynamic adaption of the
detonation wave (t = 260 µs). Right: Schematic diagram of the flow around the upper triple-point.

utilizing the method (3.1)-(3.2). It is compared with an intermediate solution of (3.1)-
(3.2) that has been computed from averaged data of the preceding step Qn−1 on an
auxiliary mesh coarsened by a factor of 2. After computing

Qn ∆t, ∆x
=⇒ Q̃ and Qn−1 2∆t, 2∆x

=⇒ Q̂ τ =
|Q̃− Q̂|

2d+1 − 2

is applied to estimate the absolute error τ . d denotes the order of the entire scheme.
We have adjusted these two different types of adaption criteria very thoroughly

to the specific problem and have been able to reduce the number of cells in the
entire hierarchy to a value between 150.000 and 200.000. Nevertheless, the calculation
needed 121 h real time on 7 computing nodes of a typical PC-cluster with Pentium
III-750 MHz processors.
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