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ANISOTROPIC MESH ADAPTATION FOR TRANSONIC AND

SUPERSONIC FLOW SIMULATION∗

VÍT DOLEJŠÍ AND JIŘÍ FELCMAN†

Abstract. We present an efficient tool for the numerical simulation of high speed flows in two
and threedimensional domains. The space discretization is carried out with the finite volume method
on unstructured triangular and tetrahedral meshes. In order to achieve sufficiently accurate capturing
of shock waves, we have applied the anisotropic mesh adaptation technique which seems to be very
suitable for problems with complicated geometries. The anisotropic mesh adaptation is a universal
adaptive method which can be used without any modification for the numerical solution of arbitrary
boundary value problem. Numerical examples of supersonic and transonic flows are presented.
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1. Introduction. The investigation and numerical simulation of high speed
flows play an important role in the computational fluid dynamics. The motion of
compressible liquid is described by conservation laws, namely the conservation of
mass, momentum and energy. Neglecting viscous terms, which are small in compar-
ison with convective ones for transonic or supersonic flows, we obtain the hyperbolic
system of the Euler equations.

Our goal is to develop a sufficiently accurate and robust method for the numerical
solution of the Euler equations. It is a known fact that the solution of hyperbolic
equations may be discontinuous even for smooth initial data. The discontinuities of
the solution represent physical phenomena which are called the shock waves. The
accurate capturing of shock waves requires the application of an adaptive method in
order to avoid enormous requirements for the memory and CPU-time.

In this paper we combine the finite volume method, which is sufficiently robust for
subsonic, transonic and supersonic flow regimes, with the anisotropic mesh adaptation

technique, which is very efficient for problems with complicated geometries. The
context of the paper is the following. We present the system of the Euler equations
in Section 2 and their discretization by the finite volume method in Section 3. The
basic ideas of the anisotropic mesh adaptation method and its application for the
computational fluid dynamics is given in Section 4. In the last section we present two
examples of inviscid flow simulation in two and three dimensional geometries.

2. Governing equations. The system of the Euler equations describing the
motion of an inviscid compressible fluid in a bounded domain Ω ⊂ IRd, d = 2, 3 and
time interval (0, T̄ ) can be written in the form

∂w

∂t
+

d
∑

s=1

∂fs(w)

∂xs
= 0 in Ω × (0, T̄ ),(2.1)
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where

w = (ρ, ρv1, . . . , ρvd, e)T, w = w(x, t), x ∈ Ω, t ∈ (0, T̄ ),

f s(w) = (ρvs, ρvsv1 + δs1p, . . . , ρvsvd + δsdp, (e + p) vs)
T, s = 1, . . . , d.

In order to close the system we add the state equation for perfect gas

p = (γ − 1) (e − ρ|v|2/2).(2.2)

We use the standard notation: t – time, x = (x1, . . . , xd) – Cartesian coordinates, ρ
– density, p – pressure, e – total energy, v = (v1, . . . , vd) – velocity, δij – Kronecker
delta, γ > 1 – the Poisson adiabatic constant.

The system (2.1) – (2.2) is equipped with the initial condition

w(x, 0) = w0(x) ∀x ∈ Ω,(2.3)

where w0 is a given function, and a set of boundary conditions. For their description
see, e. g., [8], [12].

3. Discretization. Let the domain Ω be approximated by a polygonal domain
Ωh. We construct a triangulation (for d = 2) or tetrahedrization (for d = 3) Th of Ωh

with the usual properties (in the sense of the finite element method) which defines a
finite volume partition Th = {Ti}i∈J of the closure Ωh into a finite number of closed
volumes (triangles or tetrahedra) Ti; J is a suitable index set. The boundary ∂Ti can
be expressed in the form ∂Ti =

⋃

j∈S(i) Γij , where Γij is either the common boundary

of Ti and Tj or Γij ⊂ ∂Ωh. We set |Ti| = d-dimensional Lebesgue measure of Ti, nij =
unit outer normal to ∂Ti on Γij , d(Γij) = (d − 1)-dimensional Lebesgue measure of
Γij , S(i) is a suitable index set. The time discretization of (2.1) is carried out with
the use of a partition 0 = t0 < t1 < t2 < . . . of the time interval [0, T ]. We set τk =
tk+1 − tk. We use a cell centered finite volume method (see [8]), with constant values
wk

i representing the volume average of the vector of conserved quantities w(·, tk) on Ti

at time tk. Integrating (2.1) over the set Ti × (tk, tk+1) and using the Green theorem
we obtain the following explicit scheme:

wk+1
i = wk

i − τk

|Ti|
∑

j∈S(i)

H(wk
i , wk

j , nij) d(Γij), i ∈ J, k = 0, 1, . . . .(3.1)

The term H(wk
i , wk

j , nij) is the so-called numerical flux which approximates the flux
∑d

s=1 nsf s(w) on Γij in the direction nij = (n1, . . . , nd). The values wk
i and wk

j

are the values of the function w(·, tk) approximated from the volumes Ti and Tj on
the face Γij , respectively. We evaluate the numerical flux in (3.1) by the the Osher–

Solomon scheme [14] and/or the exact solver for the Euler equations [16]. For more
detail see [9], [11].

4. Anisotropic mesh adaptation. In this section we present a brief description
of the anisotropic mesh adaptation method for d−dimensional (d = 2, 3) problems.
This approach is based on the control of the interpolation error of the solution of
the considered problem and therefore it can be used without any modification for
the numerical solution of wide range problems of physics and engineering described
by partial differential equations. As the mesh adaptation criterion is independent on
the form of the governing equations (2.1), we have to choose only a significant scalar
quantity which is characteristic for a considered problem.
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In this paper, we have chosen the density as the significant quantity. For viscous
flow problem (see [7]), it is better to chose the Mach number. In the case of heat
conduction problem (see [2]), we used a temperature. The complete description of
two and three dimensional version can be found in [6] and [10], respectively. Similar
adaptive strategies can be found in [1], [3], [13], [15], [17] and in the references therein.

4.1. Necessary condition. Let u be the significant scalar flow quantity in
which we measure the discretization error. For a given tk ∈ [0, T ], uk means the
function x ∈ Ω → uk(x) = u(x, tk). The function uk is supposed to be an element of
the space of trial functions U which has to be specified. Let us consider the space of
piecewise linear discontinuous functions

Uh =
{

uh ∈ L1(Ωh); uh

∣

∣

T
∈ P1(T ) ∀T ∈ Th

}

,(4.1)

where P1(T ) denotes the space of all linear polynomials on T . Let uk
h ∈ Uh be the

approximation of uk computed by a numerical method. To measure how close the
approximate solution uh is to the exact solution u we define the discretization error

as

eh ≡ ‖u − uh‖X ,(4.2)

where ‖·‖X is a suitable norm such that the expression ‖v‖X has a sense ∀v ∈ U ∪Uh.
The ultimate goal of a numerical method is to compute the approximate solution
satisfying

eh ≤ ω(4.3)

where ω is is a prescribed tolerance.

In what follows we present the necessary condition for the relation (4.3) and show
how its satisfaction can be used for the construction of adaptive meshes. Let Πh:
U → Uh be an operator such that

‖w − Πhw‖X = min
wh∈Uh

‖w − wh‖X ∀w ∈ U.(4.4)

It is evident that

‖u− Πhu‖X ≤ eh.(4.5)

This is the crucial point of the proposed adaptation strategy: Any numerical method
computes the approximate solution uh with the discretization error which is bounded
from below by ‖u− Πhu‖X . Then the necessary condition to fulfill (4.3) is

‖u − Πhu‖X ≤ ω.(4.6)

In order to give the numerical method the chance to satisfy (4.3), the mesh on which
(4.6) holds is needed. It is evident that the magnitude of ‖u−Πhu‖X strongly depends
on the choice of Th and it is completely independent of the numerical solution uh itself.
We will modify the given mesh Th in order to satisfy the necessary condition (or its
modification). Moreover we require that #Th is as small as possible (in order to save
the memory and CPU-time), where #Th denotes the number of elements of Th.
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4.2. Interpolation operator. We have introduced the operator Πh in (4.4)
but the construction of Πhu, which depends on the choice of the norm ‖ · ‖X , is
difficult. Therefore we introduce a new simpler operator which will be used for further
consideration. Let xi ∈ Ti be a given point ∀Ti ∈ Th and u ∈ C1(Ω) then we define
the interpolation operator rh : U → Uh such that

rhu(xi) = u(xi) ∀Ti ∈ Th,(4.7)

∇rhu(xi) = ∇u(xi) ∀Ti ∈ Th.

The definition of rh is unique for a given set of points {xi} and rhu ∈ Uh can be
simply constructed for given u ∈ C1(Ω). As rhu ∈ Uh we have from (4.4)

‖w − Πhw‖X ≤ ‖w − rhw‖X ∀w ∈ U.(4.8)

Therefore the condition

‖u − rhu‖X ≤ ω(4.9)

is stronger than the necessary condition (4.6) but as it is easily computable and we
use it for further consideration.

4.3. Mathematical background of AMA. Our aim is to adapt a given mesh
Th so that after adaptation it satisfies the stronger condition (4.9) and #Th is minimal.
Let us suppose that the dependence of ‖u − rhu‖X on #Th is monotone. Then the
inverse problem can be formulated: Adapt a given mesh Th in such a way that the
interpolation error ‖u − rhu‖X is minimal for a fixed #Th.

The basic idea is the following: In order to minimize the interpolation error for a
given #Th, the interpolation error function defined by

EI(x) ≡ |u(x) − rhu(x)|(4.10)

should be equidistantly distributed over the whole computational domain Ω, i.e.

EI (x) ≈ C ∀x ∈ Ω,(4.11)

where C > 0 is a constant. If u ∈ C2(Ω) then using a Taylor series expansion at a
point x0 ∈ Ω we have

u(x) − rhu(x) =
1

2
(x − x0)

TIH(x0)(x − x0) + o(|x − x0|2),(4.12)

where

IH(x) ≡
{

∂2u(x)

∂xi ∂xj

}d

i,j=1

(4.13)

is the Hesse matrix of the function u.
In order to minimize the interpolation error function EI , we introduce the discrete

version of the condition (4.11). We consider the interpolation error function EI over
edges for practical reasons. Let e be an edge of Th (connecting two nodes of Th), `e
notes the Euclidean length of e and let xe be a centre of e. We approximate EI |e
by the mean value of EI over e. Then the omitting the terms of higher order yields

EI

∣

∣

e ≈ 1

`e

∫

e
|u(x) − rhu(x)| dS ≈

≈ 1√
2

1

`e

∫

e
|(x − xe)IH(xe)(x − xe)| dS =

1√
24

∣

∣

∣
~eTIH(xe)~e

∣

∣

∣
,(4.14)
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where ~e ∈ IRd is the vector parallel with the edge e and with the Euclidean norm
equal to `e We define the norm of the edge e corresponding to the matrix IH by

‖e‖IH ≡
(
∣

∣

∣
~eTIH(xe)~e

∣

∣

∣

)1/2

.(4.15)

We have from (4.14) and (4.15), that the interpolation error function is uniformly
distributed over the mesh Th if

EI |e ≈ 1√
24

‖e‖2
IH ≈ ω for any edge e of Th,(4.16)

where ω > 0 is the given accuracy. With the aid of (4.16) we define the following:
Definition 4.1. The mesh Th is optimal iff

‖ek‖IHk
= ε ∀ek ∈ Th, ek edge of Th, IHk ≡ IH(xek

),(4.17)

where ε > 0 is a given constant which plays a role of accuracy.

In order to measure how the mesh is close to the optimal one we define the quality

parameter of Th by

QTh
≡ 1

#E
∑

ek∈Th

(‖ek‖IHk
− ε)

2
,(4.18)

where sum is taken over all edges of Th and #E is their number. The quality parameter
is always nonnegative and it is equal to zero if the mesh is optimal in the sense of the
Definition 4.1. Therefore to improve the quality of the mesh we modify Th in order to
decrease QTh

. The mesh adaptation is performed by an iterative process consisting
of the combination of the following local operations:

• Case d = 2: removing an edge, inserting a node in the centre of an edge,
swapping a diagonal of quadrilateral formed be two adjacent triangles and
moving a node, see [5], [6].

• Case d = 3: removing an edge, inserting a node in the centre of an edge,
swapping a face for boundary tetrahedra, swapping an edge for internal tetra-
hedra and moving a node, see [10].

In order to evaluated the second order derivatives in (4.13), we approximated u
by the numerical solution uh and use some smoothing technique, see [6]. Then the
computational process consists of multiplicative application of the finite volume solver
in combination with the anisotropic mesh adaptation. We stop the computational
process when two successive meshes are almost identical.

5. Numerical examples. In this section we present two examples of compress-
ible inviscid flow. The finite volume method was used as an iterative time marching
process with k → ∞ for obtaining the steady state solution.

5.1. 2D supersonic scramjet inlet. The first case consists of an internal su-
personic flow at Mach number (= |v|/(γp/ρ)1/2) equal to 3 in a scramjet inlet, Figure
5.1 shows the geometry of the problem. The supersonic inlet and several obstacles
with sharp angles give the solution with a few shock waves, see [4]. Although the
configuration is symmetric, the nonsymmetric mesh of the whole domain has been
computed to observe if the solution remains symmetric or not.

Using five automatic mesh adaptations we have obtained the final mesh. Figures
5.2 and 5.3 show the final triangular mesh (52285 elements) and the corresponding



ANISOTROPIC MESH ADAPTATION 83

Fig. 5.1. Geometry of the problem 5.1

isolines of Mach number, respectively. We see rather complicated geometry of shock
waves and it is interesting to notice that there are no oscillations in the solution and
that the finite volume solver is robust and accurate even for such meshes with very
anisotropic triangles. Moreover the numerical solution stays symmetric.

Fig. 5.2. Final triangulation for a supersonic scramjet inlet

5.2. 3D transonic flow through 3D GAMM channel. The three-dimensional
transonic inviscid flow through the channel (with 25 % spherical bump on the lower
wall) of air with inlet Mach number Minlet = 0.67 was solved. The size of the channel
is x1 ∈ [0, 2], x2 ∈ [0, 1.5] and x3 ∈ [0, 1]. The direction of the flow is parallel with
x1 axis and goes from left to right. Figures 5.4 and 5.5 show the final tetrahedral
mesh (with 8786 elements) achieved after five mesh adaptations and the corresponding
isolines of Mach number, respectively.

Despite the small number of elements used in the computation of the 3D test
channel flow, the anisotropic mesh adaptation method leads to satisfactory results.
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Fig. 5.3. The corresponding isolines of Mach number for a supersonic scramjet inlet
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Fig. 5.4. Final tetrahedrization of 3D GAMM channel

[2] M. Breuss, V. Doleǰśı, and A. Meister. On an adaptive method for heat conduction problems
with boundary layers. Computing and Visualization in Science, (submitted).

[3] M. J. Castro Dı́az, H. Borouchaki, P. L. George, F. Hecht, and B. Mohammadi. Anisotropic
Adaptive Mesch Generation in Two Dimensions for CFD. In Proceeding of ECCOMAS96

– Computational Fluid Dynamics, Paris, pages 181–186, 1996.
[4] M. J. Castro Dı́az, F. Hecht, and B. Mohammadi. New progress in anisotropic grid adaptation

for inviscid and viscous flows simulations. In Proceedings of the 4th Annual International

Meshing Roundtable. Sandia National Laboratories, 1995.
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