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NUMERICAL SIMULATION OF A MODEL FOR TRANSPORT AND

REACTION OF RADIONUCLIDES WITH AN EXPLICIT COUPLING

METHOD BETWEEN TRANSPORT AND REACTION ∗

JÜRGEN GEISER †

Abstract. In the last years the interest in computer simulations of radioactive waste scenarios
has increased. In this article we present numerical simulations with the software package TRAPRO.
We consider a system of convection-diffusion-reaction-equations, that we coupled by their reaction
terms. We present a new discretization method that improves the explicit discretization for the
transport- and reaction-term. The method should replace the previous decoupled implicit method
with an operator-splitting method by an explicit coupled method between transport and reaction.
For analyzing the method we reduce our model to a simpler system of convection-reaction-equations.
The numerical results will be compared with the exact solutions. With a test example we illustrate
results of our recent research on this subject.
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1. Introduction. The main motivation for our research is the question of how
to find a suitable disposal for radioactive waste. To answer this question we have
developed a software package for testing possible scenarios. We have further developed
suitable discretizations and appropriate solvers, cf. [6], [7] and [9].

The model is based on a convection-diffusion-reaction-equation with kinetic sorp-
tion, see [3] and [6] . The present numerical methods, cf. [9], are standard methods
of 1st order. For the space-discretization we use barycentric finite-volume methods of
1st order, cf. [2] with an upwind scheme for the convection-term, cf. [5]. For the time-
discretization we use a backward-Euler-method of 1st order. As a nonlinear solver we
take a Newton-method, that uses a linear solver with a biconjugate gradient method.
The biconjugate gradient method uses the multigrid method as solver. The first im-
provements towards higher order methods were achieved in the time-discretization.
We replaced the implicit first order methods by Runge-Kutta-methods of 2nd order.
For the reaction-term we use an operator-splitting-method of 1st order.
In our recent work on higher order discretization we have tried to find an exact so-
lution for the transport-reaction-term and to solve them explicitly. We could solve
the problem by an operator-splitting method or by a coupled solving of transport and
reaction with finite volumes.
The development of these methods and the numerical calculations are described in
this paper. Numerical experiments indicate the advantages of the new method.

In Section 2 we describe the mathematical model. In Section 3 we reduce it to a
simpler model. The coupled explicit method is described in Section 4, the application
to a system of 2 equations is explained in Section 5. The numerical methods are
explained in Section 6. First results on the simulation of a real scenario is presented
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in Section 7. In Section 8 we finish with the conclusion and discussion of the new
coupling method.

2. The mathematical model. In this section we describe the model for the
transport and reaction of radionuclide pollutants in groundwater flow. Further, we
derive a reduced model for our experiments.

We consider a groundwater flow in a porous media. The radioactive pollutants
are transported through the porous media. The retention period in the media is called
mobile phase. We assume that the concentration of the pollutants does not influence
the flow. A full description of the model is given in [3] and [6]. In the full model there
are four different phases in which a pollutant could be. In [8], [9] we are focussed on
the calculations in the mobile phase.

The quantity of the pollutant is given by the concentration depending on time
and space. We will restrict ourselves to the concentration of the mobile phase in 2
space dimensions. The concentration of the i-th nuclide in the mobile phase is denoted
by ui ([mol/m3]).

The transport in the mobile phase depends on the parameters of the velocity
v = (vx, vy)T and the dispersion-diffusion-tensor D = φ de(i) T + |v| (αT + (αL −
αT )vT ·v/|v|), where de(i) is the molecular diffusion for the element e, T the tortuosity
and αL , αT are the longitudinal and transversal dispersionals, respectively.

Each nuclide i corresponds to a chemical element e(i). The i-th nuclide decays at
rate λi . The nuclide has one successor and possibly more than one predecessor in the
decay chain. The predecessors are denoted by k ∈ k(i). The porosity φ appears in the
equation as a scaling factor between the micro- and macro-scale. The retardation-
factor Ri(φ, ue(i)) is calculated from the isotherms, cf. [6], and could be linear or
nonlinear.

The equations of the mobile phase are coupled with the reaction and given by :

Ri(φ, ue(i))



∂tu
i + λiui −

∑

k∈k(i)

λkuk



(2.1)

+ ∇ · (v ui − D ∇ ui) = 0 , ui = ui(x, y, t), (x, y, t) ∈ IR2 × IR+ ,

i := 1, . . . , m with m : number of nuclides .

3. Reduction of the model equation. For analyzing typical phenomena of
the convection-reaction-equation we consider instead of (2.1) the simplified equation
(3.1) without the diffusion-term.

Here ui,0 = ui(t0) is the initial condition of a delta-impulse at time t = 0 and
ui,n = ui(tn) the concentration at time tn. The transport-term ∇· (v ui,n −D ∇ui,n)
is simplified to the velocity v = (v, 0)T .

The exchange reduces to an equilibrium sorption with Henry-isotherm K
e(i)
d and

is given by a constant retardation-factor Ri = φ + (1−φ) ρ K
e(i)
d . The reaction-term

remains the same as in (2.1). We get the reduced system of equations :

Ri



∂tu
i + λiui −

∑

k∈k(i)

λkuk



+ v ∂xui = 0 ,(3.1)

ui = ui(x, y, t), (x, y, t) ∈ IR2 × IR+ ,
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i := 1, . . . , m with m : number of nuclides .

4. Explicit method for coupled transport and reaction. In this section
we explain the new explicit method of discretization of the coupled system. In [9] we
simplify the transport-reaction equation with the decoupled method of the operator-
splitting. Now we construct a coupled explicit method based on the local mass-
balance, cf. [7], and exact distribution of mass.

The idea is first to calculate exactly the sinks and sources on each dual cell (cf.
[2]) for the case of no transport and then to move these sinks and sources with the
transport velocity.

The following steps are necessary for coupling the transport and the reaction.
1. Solving of the reaction-term, cf. [9] .
2. Coupling the reaction- and the transport-term by calculating the integration

parameter for the source- and sink-terms.
We now explain these steps in detail.
1. Solving of the reaction-term, cf. [9] and [12]

∂tu
i = −λiui +

Ri−1

Ri
λi−1ui−1,(4.1)

is transformed to :

∂ta
i = −λiai.(4.2)

The transformation of the concentration is as follows.
1. The transformation ai,n def

= f1 (u1,n, · · · , ui,n) is given by

ai,n = ui,n +
i−1
∑

k=1

Rk

Ri

i−1
∏

l=k

λl

λl − λi
uk,n.(4.3)

2. The i-th equation in (4.2) has the solution

ai,n+1 = ai,n e−λiτn

.(4.4)

3. This solution is re-transformed by ui,n+1 def
= f2 (ai,n+1, u1,n+1, · · · , ui−1,n+1):

ui,n+1 = ai,n+1 −

i−1
∑

k=1

Rk

Ri

i−1
∏

l=k

λl

λl − λi
uk,n+1.(4.5)

4. This solution is prepared for the integration of the sink- and source-terms

ui,n+1 = ui,n e−λiτ
n

+

(

i−1
∑

k=1

Rk

Ri

i−1
∏

l=k

λl

λl − λi
uk,n

)

e−λiτ
n

−
i−1
∑

k=1

Rk

Ri

i−1
∏

l=k

λl

λl − λi
uk,n+1

ui,n+1 def
= ui,n e−λiτ

n

+ f3(u
1,n, · · · , ui−1,n) .(4.6)

Therefore the sink in the function ui,n+1 is ui,n e−λiτ
n

and the source-term
with the coupled concentration is f3(u

1,n, · · · , ui−1,n) .
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2. Coupling with the transport-term :
The main idea is that the mass-conservation is given by

m
∑

i=1

I
∑

j=1

mi,n
j =

m
∑

i=1

I
∑

j=1

mi,n+1
j ,(4.7)

for any time-interval (tn, tn+1) ⊂ (0, T ), n = 0, 1, . . . and for the computational cells
Ωj ⊂ Ω , j = 1, . . . , I , for the equations i = 1, . . . , m .

We distinguish the source- and sink-terms in (4.6).
For the computation of the source term on a cell, all predecessor cells have to be

taken into account. In contrast, the sink terms we computed on each cell separately.
The idea is to find the fraction of mass that remains in cells j and j + 1. The

source term affected by velocities on the predecessor cells which are used to calculate
the fraction of mass in the cells j and j + 1. To calculate the affected areas in the
cells we get the minima area vmin τn and maxima area vmax τn in the cells.

The set of indices k(i) denotes the predecessors of the element i. To get the
velocity of the equation we divide by the retardation-factors Ri and get vi = v

Ri
. To

get the minimal and maximal velocity in the dual cell we calculate

vmini
= min

l∈k(i)
{vi, vl} ,

vmaxi
= max

l∈k(i)
{vi, vl} .(4.8)

We consider the transport in 1 dimension from the dual cell j to the cell j + 1 . The
coupling between transport and reaction is given for the dual cells j and j + 1 by the
following distribution :

t ∈

(

0,
x − vmini

τn

vmaxi
− vmini

)

for j ,(4.9)

t ∈

(

x − vmini
τn

vmaxi
− vmini

, τn

)

for j + 1 .(4.10)

The integration-parameter over the area in the dual cell j and j + 1 is given by

x ∈ (0, vmini
τn), (vmini

τn, vmaxi
τn), (vmaxi

τn, h) for j and j + 1 .(4.11)

Now we consider the sink and source terms in equation (4.6). For the calculation of
the sink term the velocity is taken into account. The source term is calculated using
the minimum and maximum velocity of the affected equations, cf. (4.8).

mi,n+1
j = ui,n

j e−λi τn

(h − vi τn)(4.12)

+

∫ vmaxi
τn

vmini
τn

f3(u
1,n
j , . . . , ui−1,n

j )|

x−vmini
τn

vmaxi
−vmini

0 dx

+

∫ h

vmaxi
τn

f3(u
1,n
j , . . . , ui−1,n

j )|τ
n

0 dx .

mi,n
j+1 = ui,n

j e−λi τn

vi τn(4.13)

+

∫ vmini
τn

0

f3(u
1,n
j , . . . , ui−1,n

j )|τ
n

0 dx

+

∫ vmaxi
τn

vmini
τn

f3(u
1,n
j , . . . , ui−1,n

j )|τ
n

x−vmini
τn

vmaxi
−vmini

dx .



90 J. GEISER

To check the exact mass balance for the equation (4.12), we compare the sum of the
two masses given in (4.12) with the mass given before mass transport.
We get the exact mass balance by :
mi,n+1

j + mi,n+1
j+1 = ui,n

j e−λi τn

h + f3(u
1,n
j , . . . , ui−1,n

j ) h.

5. Application of the new method to a system of 2 equations. We con-
sider the following equations :

∂u1

∂t
+ v1

∂u1

∂x
= −λ1u1 ,(5.1)

∂u2

∂t
+ v2

∂u2

∂x
= −λ2u2 +

R1

R2
λ1u1 .(5.2)

We assume that v1 6= v2, λ1 6= λ2, vmin = {v1, v2} and vmax = {v1, v2}. We set for
the concentration of the cells j and j + 1 :

Sink :

u2,n+1
j = u2,n

j e−λ2 τn

for x ∈ (v2 τn, h) ,(5.3)

u2,n+1
j+1 = u2,n

j e−λ2 τn

for x ∈ (0, v2 τn) ,(5.4)

Source :

u2,n+1
j = 0 for x ∈ (0, vmin τn) ,(5.5)

u2,n+1
j = u1,n

j

R1

R2

λ1

λ1 − λ2

(

e
−λ2

x−vmin τn

vmax−vmin − e
−λ1

x−vmin τn

vmax−vmin

)

(5.6)

for x ∈ (vmin τn, vmax τn) ,

u2,n+1
j = u1,n

j

R1

R2

λ1

λ1 − λ2
(e−λ2 τn

− e−λ1 τn

) for x ∈ (vmax τn, h) ,(5.7)

u2,n+1
j+1 = u1,n

j

R1

R2

λ1

λ1 − λ2
(e−λ2 τn

− e−λ1 τn

) for x ∈ (0, vmin τn) ,(5.8)

u2,n+1
j+1 = u1,n

j

R1

R2

λ1

λ1 − λ2

(

e
−λ1

x−vmin τn

vmax−vmin − e
−λ2

x−vmin τn

vmax−vmin(5.9)

+e−λ2 τn

− e−λ1 τn
)

for x ∈ (vmin τn, vmax τn) ,

u2,n+1
j+1 = 0 for x ∈ (vmax τn, h) .(5.10)

The concentration is integrated over the intervals, cf. (4.11), and so we get the flowing
equations for the masses :

Sink :

m2,n
j = u2,n

j e−λ2τn

(h − v2 τn) ,(5.11)

m2,n
j+1 = u2,n

j e−λ2τn

v2 τn ,(5.12)

Source :

m2,n
j = u1,n

j

R1

R2

λ1

λ1 − λ2

(

vmax − vmin

λ2
(1 − e−λ2τn

)(5.13)

+
vmax − vmin

λ1
(e−λ1τn

− 1) + (h − vmaxτn)(e−λ2τn

− e−λ1τn

)

)

,
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m2,n
j+1 = u1,n

j

R1

R2

λ1

λ1 − λ2

(

(e−λ2τn

− e−λ1τn

) vmaxτn(5.14)

+
vmax − vmin

λ1
(1 − e−λ1τn

) +
vmax − vmin

λ2
(e−λ2τn

− 1)

)

.

For the two dimensional case we use the description of the flux-discretization with
inflow- and outflow-notation, cf. [7].

m1,n
jk = u1,n

j vjk
1

τne−λ1τn

,(5.15)

m2,n
jk = u1,n

j

R1

R2

λ1

λ1 − λ2

(

(e−λ2τn

− e−λ1τn

) vjkmax
τn(5.16)

+
vjkmax

− vjkmin

λ1
(1 − e−λ1τn

) +
vjkmax

− vjkmin

λ2
(e−λ2τn

− 1)

)

+u2,n
j vjk

2
τne−λ2τn

.

Here vjk = |Γjk | (n · v)(xjk), v = (v, 0)T . Γjk is the line segment between the
computational cells Ωj and Ωk. xjk is the middle point of the line segment Γjk . The
flow for the velocity vi is given by vjki

=
vjk

Ri
, for i = 1, 2.

The values of the minimum and the maximum retardation-factors are given by
Rmin = min{R1, R2} , Rmax = max{R1, R2} . The minimum and maximum flows
are given by vjkmin

=
vjk

Rmin
and vjkmax

=
vjk

Rmax
.

The equation (5.15) is inserted in the discretization, cf. [7], so we get

Vj ui,n+1
j = Vj ui,n

j −
∑

k∈out(j)

mi,n
jk +

∑

l∈in(j)

mi,n
lj for i = 1, 2.(5.17)

6. Numerical methods. The method described in Section 4 for solving equa-
tion (2.1) is implemented in the flexible software-package TRAPRO.

We have programmed a flexible input interface for reading the different model-
parameters from input-files in runtime.

The program-package uses the powerful library of the software-package UG, cf.
[1]. We use the efficient sparse matrix storage for our equations, cf. [10].

For the implicit discretization we use an implicit backward-Euler-method. The
explicit discretization uses a modified TVD-method with a time-limiter, cf. [8] and
[11] .
The implicit method uses an operator-splitting method, cf. [9], and the explicit
method uses the new method described in Section 4 . Finally, we applied our method
to two numerical experiments.

7. Numerical results. In the first experiment we use an initial condition at
initial time t0 = 0.0 and at initial area (x0, y0) ∈ ((0.125, 0.375) × (0.375, 0.625)),
with u1(x0, y0, t0) = 1.0 and u2(x0, y0, t0) = 0.0. The velocities are v1 = 0.01 and
v2 = 0.0, the decay-rates are λ1 = 0.01 and λ2 = 1.0 10−6. For analyzing the transport
we compute only the first time-step. We compare two different discretizations for the
transport.

The results of the calculation by the operator-splitting method are shown in the
first two pictures in Figure 7.1. The operator-splitting method consists of two steps,
first the decay- and then the transport-step. In the first picture we see the initial
concentration u1, in the second picture the concentration u2 after the first time-step.
As v2 = 0.0 the concentration u2 is not transported in the first time step.
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The analogous results of the computation with the explicit coupling method are
shown in the last two pictures in Figure 7.1.

Due to coupling of decay and transport, u2 is transported already in the first
time-step.

u_1 (t_0) u_2_op (t_1) u_1 (t_1) u_2_ex (t_1)

Fig. 7.1. Calculation with Operator-Splitting and coupled Explicite Method

The second experiment is taken from a realistic problem of radionuclide transport
in porous media. The exact solution of the equations are known, cf. [6], and are
compared with the numerical results.

To support the results, cf. Section 1, different test cases are computed with
modified grid- and time-steps. The parameters for the equations are given by R1 =
50.5 , R2 = 1.0, λ1 = 7.6 10−3 , λ2 = 2.2 10−4 , for the velocity and the dispersion
we get v = 0.2 , αL = 1.0 , αT = 0.1 and φ = 0.5 .

We compare the result with in L1-norm computed by
El

L1
:=
∑m

i=1

∑I

j=1 Vj |ui,n
j − ui(xj , yj , t

n)| .
Table 7.1 shows the results in the L1-norm for different grid- and time-steps. The

results with the new method are significantly better. Figure 7.2 we see the result of

The method l ∆t El
L1

timesteps

implicit method with OP 4 0.25 1.99 10−2 10
implicit method with OP 5 0.125 3.93 10−3 20
implicit method with OP 6 0.0625 9.866 10−4 40

explicit coupling method 4 0.25 1.25 10−2 10
explicit coupling method 5 0.125 3.39 10−3 20
explicit coupling method 6 0.0625 7.003 10−4 40

Table 7.1

Comparison between implicit decoupling and explicit coupling method

the two equations. The different velocities are v1 = 0.2/50.5 and v2 = 0.2/1.0. We
use a grid with 24576 elements. The timestep is ∆t = 0.0625. The pictures on the
left hand side in Figure 7.2 shows the initial concentrations at time t100 = 100 a,
the pictures on the right hand side in Figure 7.2 shows the concentrations at time
t200 = 200 a.

8. Conclusions. We have presented a new method for the numerical compu-
tation of a certain class of transport-reaction equations with different retardation-
factors. We have shown, in particular, how to solve an explicit method that couples
transport and reaction exactly. With our new method we are able to solve the con-
sidered systems exactly. Our current work is now focussed on kinetic sorption, with
the combination with the exact explicit method.
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Fig. 7.2. ui(tn) for n = 1, 2 at t1 = 100a (initial condition) and at t2 = 200a.
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