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PARALLEL IMPLEMENTATION OF BIRGE AND QI METHOD FOR

THREE-STAGE STOCHASTIC PROGRAMS USING IPM∗

G.CH.PFLUG† , L.HALADA‡, AND M.LUCKA§

Abstract.

One approach how to solve a linear optimization problem is based on the interior point method.
This method requires a solution of the large system of linear equations. A special matrix factorization
techniques that exploit the structure of the constraint matrix has been suggested for its computation.
The method of Birge and Qi has been reported as efficient, stable and accurate for two-stage stochas-
tic programs. In this report we present a generalization of this method for three-stage stochastic
programs. For this method we have proposed a parallel algorithm based on the Message Passing
Interface (MPI). The algorithm was coded in the Fortran 90 programming language, whereby for
solving of linear algebra problems the linear algebra package LAPACK has been used.
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1. Introduction. Many practical problems with uncertain parameters can be
modeled as stochastic programs. In the literature one can find such applications in
science, technology and economy. References to the wide range of applications are
made in the textbook of Kall and Wallace [1], too. Stochastic programs are usually
very difficult and even in the simplest case of linear programming problems with
finitely many events (scenarios) they lead to a system of equations with very large
numbers of variables and constraints. One approach for solving of such stochastic
problems is Interior Point Method (IPM). They are many variants of this method.
We will use primal-dual path-following algorithm based on the solution of Kuhn-
Karush-Tucker (KKT) equation. Crucial for efficiency of this approach is the solution
of linear system of the form

(ADAt) ∆y = b.(1)

Solving of this problem requires more then 90 − 95% of total programming time [2].
Birge and Holmes [3] compared different methods for the solution of this system for
two-stage stochastic programs. They found that the factorization technique based on
the work of Birge and Qi (BQ) [4] is more efficient and stable than other methods.
A parallel version of BQ for two-stage stochastic programs was also implemented on
an Intel iPSC/860 hypercube and a Connection Machine CM-5 with nearly perfect
speedup [5].

The aim of this report is a suggestion how the BQ method can be used for the
three-stage stochastic programming. In Section 2 we introduce the problem formu-
lation. An application of the BQ to a three-stage stochastic model together with an
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algorithm is given in Section 3. In the last section a parallel implementation of this
algorithm is described and the speed-up for different number of parallel processes is
illustrated on an example. The results of experiments were obtained on the parallel
Beowulf-Cluster Gescher at the VCPC, University of Vienna.

2. The two-stage problem formulation. The deterministic equivalent for-
mulation of the two-stage stochastic linear program have the following form:

minimize {ctx +

k
∑

i=1

pridiyi}

subject to A0x = b0

Tix + Aiyi = bi(2)

x ≥ 0, yi ≥ 0, i = 1, 2, ..., k

where x is the vector of decision variables whose optimal value is not conditioned on
the realization of uncertain parameters. The variable yi denotes the vector of control
decision (recourse action). The number of the different possible future outcomes
(scenarios) to be assumed is k and probability of its occurrence pri, i = 1, 2, ...k.
Thus, the constraint matrix of the two-stage stochastic program has the following
block angular structure

A =















A0

T1 A1

T2 A2

...
. . .

Tk Ak















.(3)

The standard IPM approach for finding the solution of (2) is the primal-dual path-
following algorithm based on the solution of perturbed KKT system





At I
A
Z X









x
y
z



 =





c
b
µe



 ,(4)

where X and Z are diagonal matrices whose diagonal entries come from vectors x and
z, respectively and e denotes the vector of all ones. As µ ↓ 0 the solution of this
system converge to the solution of our two-stage problem. Using the Newton method
for solving of (4) with the iterative updates (x, y, z, ) by the formula

x : = x + αp∆x

y : = y + αd∆y(5)

z : = z + αd∆z,

where αp, αd ∈ (0, 1) are chosen to keep x > 0 and z > 0, we obtain

∆z = X−1rc − X−1Z∆x(6)

∆x = Z−1(XAt∆y + rc − Xrd)(7)

(ADAt) ∆y = rp + AZ−1(Xrd − rc).(8)

Here D = Z−1X is a diagonal matrix with all entries strictly positive and rp, rd and
rµ are residual vectors of the perturbed KKT system. We note, if matrix A has full
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row rank then ADAt is a symmetric positive definite and thus the system (8) has a
well defined solution.

The most difficult part of the computation (6)-(8) is the solution of the system
(8). Birge and Qi [4] suggested to solve such system by the factorization of (ADAt)
matrix that exploits the structure of the constraint matrix A. The basic idea is as
follows:

Let (ADAt) be expressed as

ADAt = R(2) + U (2) [ D(2) (V (2))t ] = R(2) + U (2) [ (W (2))t ],(9)

where

R(2) = Diag(Im0
, A1D1A

t
1, . . . , AkDkAt

k) = Diag(Im0
, R1, . . . , Rk)(10)

and

U (2) D(2) (V (2))t =















A0 Im0

T1

T2

...
Tk















(

D0

Im0

)(

At
0 T t

1 T t
2 . . . T t

k

−Im0

)

.

Then for the inverse of (ADAt) they suggested to use the Sherman-Morrison-Wood-
bury formula. It holds [6]

(ADAt)−1 = (R(2))−1 − (R(2))−1 U (2) (G(2))−1 (V (2))t (R(2))−1,(11)

if and only if both R(2) and G(2) are nonsingular, where

(G(2))−1 = [In0+m0
+ (W (2))t(R(2))−1U (2)]−1D(2).(12)

In the matrix form

G(2) =

(

D−1
0 + At

0A0 +
∑k

i=1 T t
i R−1

i Ti At
0

−A0 0

)

=

(

Ĝ(2) At
0

−A0 0

)

.(13)

It has been proved [3] that if the matrix A has full row rank then Ĝ(2) is positive
definite and symmetric matrix and G(2) is nonsingular. Hence, the conditions for
the validity of (11) are fulfilled. Thus, we can rewrite the solution of the system
(ADAt) dy = b by the relation (11) as follows: dy = p(2) − s(2), where

R(2) p(2) = b(14)

G(2) q(2) = (V (2))t p(2)(15)

R(2) s(2) = U (2) q(2).(16)

The procedure for sequential computing of the vector dy by (14)-(16) has been
formulated in [3] and named Finddy. Formally, parameters of this procedure are

Finddy(R(2), A0, D0, T1, . . . , Tk, b, dy).

In the next section we will use this procedure in the formulation of the algorithm for
the three-stage stochastic program.
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3. BQ Method Applied to Three-Stage Stochastic Model. As in the two-
stage case, we can write the deterministic equivalent system of equations for tree-stage
problem, too. If we will suppose the two scenarios in second and three scenarios in
the third stage then the constraint matrix of the tree-stage problem A(3) in this case
will have the following form:

A(3) =





























A0

T10 A10

T11 A11

T12 A12

T13 A13

T20 A20

T21 A21

T22 A22

T23 A23





























(17)

where A0 is m0 × n0 and Aij are mij × nij matrices. Tij has the size conformable to
the matrices A0 and Aij . In the block form

A(3) =







A0

T
(3)
1 A

(2)
1

T
(3)
2 A

(2)
2






,(18)

where A
(2)
i , i = 1, 2 represent the two-stage problem in the frame of the whole three-

stage problem. Let D(3) be diagonal and positive definite matrix

D(3) = Diag(D0; D10, . . . , D13; D20, . . . , D23) = Diag(D0, D
(2)
1 , D

(2)
2 ),(19)

where D0 and Dij are diagonal n0 × n0 and nij × nij matrices with positive entries,
i = 1, 2; j = 0, 1, 2, 3.. Again, we assume that A0 and Aij have full row rank and
m0 ≤ n0, mij ≤ nij , i = 1, 2; j = 0, 1, 2, 3. Now, our main problem is to find the
solution of the system

[A(3)D(3)(A(3))t]dy(3) = b(3)

The matrix R(3) = A(3)D(3)(A(3))t in the denotation of the largesized blocks matrix
A(3) can be decomposed as follows:

R(3) = R(3) + U (3)[ D(3) (V (3))t ] = R(3) + U (3)[ (W (3))t ],

where

R(3) = Diag(Im0
, A

(2)
1 D

(2)
1 (A

(2)
1 )t, A

(2)
2 D

(2)
2 (A

(2)
2 )t) = Diag(Im0

, R
(2)
1 , R

(2)
2 )

and

U (3)D(3) (V (3))t =







A0 Im0

T
(3)
1

T
(3)
2







(

D0

Im0

)(

At
0 (T

(3)
1 )t (T

(3)
2 )t

−Im0

)

.

By the Sherman-Morrison-Woodbury formula we obtain again

( R(3) )−1 = (R(3))−1 − (R(3))−1U (3) (G(3))−1 (V (3))t (R(3))−1,(20)
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if and only if R(3) and G(3) are nonsingular. Here

(G(3))−1 = [ In0+m0
+ D(3) (V (3))t (R(3))−1 U (3)]−1 D(3)

G(3) = (D(3))−1 + (V (3))t (R(3))−1 U (3).(21)

In the matrix form:

G(3) =

(

D−1
0 + At

0A0 +
∑2

i=1(T
(3)
i )t(R

(2)
i )−1T

(3)
i At

0

−A0 0

)

=

(

Ĝ(3) At
0

−A0 0

)

.(22)

The validity of (20) follows from the same reason as for the two-stage model. Thus,
the solution of R(3) dy(3) = b(3) can be expressed by the inversion as dy(3) = p(3)−s(3)

while

R(3)p(3) = b(3),(23)

G(3)q(3) = (V (3))tp(3),(24)

R(3)s(3) = U (3)q(3).(25)

The equations (23)-(25) represent the decomposition of the original problem into three
sub-problems. An advantage of such decomposition is that R(3) is the block-diagonal
matrix amenable to further decomposition.

3.1. Solving the Equation R(3)p(3) = b(3). It is easy to see from the equation

R(3)p(3) =







Im0

R
(2)
1

R
(2)
2













p
(3)
0

p
(3)
1

p
(3)
2






=







b
(3)
0

b
(3)
1

b
(3)
2






(26)

that this system represents the following independent systems

p
(3)
0 = b

(3)
0(27)

R
(2)
i p

(3)
i = b

(3)
i , i = 1, 2,(28)

where R
(2)
i = A

(2)
i D

(2)
i (A

(2)
i )t, i = 1, 2 represent the matrices of the two-stage model

problem, which has been described in Sect.2. Therefore, (28) can be solved by the pro-

cedure Finddy. Its input parameters are readable from the entries of matrix A
(2)
i , D

(2)
i .

The right-hand side and the solution vector are b
(3)
i and p

(3)
i , i = 1, 2, respectively. It

is clear that in our case the parameters are

Finddy(R
(2)
i , Ai0, Di0, Ti1, . . . , Ti3, b

(3)
i , p

(3)
i ), i = 1, 2

where R
(2)
i is the diagonal matrix in the decomposition R

(2)
i , i.e.

R
(2)
i = R

(2)
i + U

(2)
i (W

(2)
i )t i = 1, 2(29)

and

R
(2)
i = Diag(Imi0

, Ri1, Ri2, Ri3), Rij = AijDijA
t
ij , i = 1, 2 j = 1, 2, 3

U
(2)
i =









Ai0 Imi0

Ti1

Ti2

Ti3









, (W
(2)
i )t =

(

Di0

Imi0

)(

At
i0 T t

i1 T t
i2 T t

i3

−Imi0

)

.

If this procedure is applied for the given values, having in the mind the relations
(27)-(28) we are able to compose the vector p(3).
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3.2. Solving the Equation G(3)q(3) = (V (3))tp(3). Solving of this equation
requires to have the entries of the right-hand side vector and the sub-block matrix
Ĝ(3) available .With this aim we denote the elements of the vector (V (3))tp(3) as

(v̂
(3)
1 , v̂

(3)
2 )t. Then we have

(

v̂
(3)
1

v̂
(3)
2

)

=

(

At
0p

(3)
0 +

∑2
i=1 T t

i0p
(3)
i0

−p
(3)
0

)

,(30)

where p
(3)
i0 , i = 1, 2 is the vector of the first mi0-elements of p

(3)
i . We know from (22)

that

Ĝ(3) = D−1
0 + At

0A0 +

2
∑

i=1

(T
(3)
i )t(R

(2)
i )−1T

(3)
i .(31)

For the relatively complicated expression (T
(3)
i )t(R

(2)
i )−1T

(3)
i we can prove that

(T
(3)
i )t(R

(2)
i )−1T

(3)
i = T t

i0(T̂i0 − Ti0), i = 1, 2(32)

where T̂i0 is the solution of the equation

[ Ai0 (Ĝ
(2)
i )(−1) At

i0 ] T̂i0 = Ti0, i = 1, 2.(33)

Really, according to (11) we have

(T
(3)
i )t(R

(2)
i )−1T

(3)
i =

(T
(3)
i )t [ (R

(2)
i )−1−(R

(2)
i )−1U

(2)
i (G

(2)
i )−1(V

(2)
i )t(R

(2)
i )−1 ] T

(3)
i =

(T
(3)
i )t(R

(2)
i )−1T

(3)
i − (T

(3)
i )t(R

(2)
i )−1U

(2)
i (G

(2)
i )−1(V

(2)
i )t(R

(2)
i )−1T

(3)
i .

It holds

(T
(3)
i )t(R

(2)
i )−1T

(3)
i = T t

i0Ti0, (T
(3)
i )t(R

(2)
i )−1U

(2)
i = (T t

i0Ai0, T
t
i0),(34)

(V
(2)
i )t(R

(2)
i )−1T

(3)
i =

(

At
i0Ti0

−Ti0)

)

.(35)

Therefore

(T
(3)
i )t(R

(2)
i )−1T

(3)
i = T t

i0 Ti0 − (T t
i0Ai0, T t

i0)

(

Ĝ
(2)
i At

i0

−Ai0 0

)−1(
At

i0Ti0

−Ti0

)

.(36)

Now let
(

K L
M N

)

=

(

Ĝ
(2)
i At

i0

−Ai0 0

)−1

.(37)

According to [7]

N = [ Ai0(Ĝ
(2)
i )−1At

i0 ]−1(38)

L = −(Ĝ
(2)
i )−1At

i0 [ Ai0(Ĝ
(2)
i )−1At

i0 ]−1(39)

M = [ Ai0(Ĝ
(2)
i )−1At

i0 ]−1 Ai0(Ĝ
(2)
i )−1(40)

K = (Ĝ
(2)
i )−1 − (Ĝ

(2)
i )−1At

i0[ Ai0(Ĝ
(2)
i )−1At

i0 ]−1Ai0(Ĝ
(2)
i )−1.(41)
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Now, if we use (38)-(41) in ( 36) we obtain

(T
(3)
i )t(R

(2)
i )(−1)T

(3)
i = T t

i0[ Ai0(Ĝ
(2)
i )−1At

i0 ]−1Ti0 − T t
i0 Ti0.(42)

Thus,

Ĝ(3) = D−1
0 + At

0A0 +

2
∑

i=1

T t
i0(T̂i0 − Ti0).(43)

We remember that the Cholesky decomposition of matrix Ai0(Ĝ
(2)
i )−1At

i0 has been

performed during the procedure Finddy applied on matrix R
(2)
i , i = 1, 2. Thus, this

decomposition is available already, only triangular solver is used for the computation

of T̂i0, i = 1, 2 in this step. Having the values of Ĝ(3) and (v̂
(3)
1 , v̂

(3)
2 )t we can solve

the system

(

Ĝ(3) At
0

−A0 0

)

(

q
(3)
1

q
(3)
2

)

=

(

v̂
(3)
1

v̂
(3)
2

)

.(44)

The standard elimination process applied to this system yields

[(A0 (Ĝ(3))−1 At
0] q

(3)
2 = A0 (Ĝ(3))−1 v̂

(3)
1 + v̂

(3)
2(45)

Ĝ(3) q
(3)
1 = v̂

(3)
1 − At

0 q
(3)
2 .(46)

Thus, to solve (44) the following procedure is required:

PROCEDURE Updy(Ĝ(3), A0, v̂
(3)
1 , v̂

(3)
2 )

(a) Form the Cholesky decomposition of Ĝ(3)

(b) Solve the systems Ĝ(3)B0 = At
0

(c) Form the Cholesky decomposition of A0B0

(d) Solve the systems (45) and (46).

3.3. Solving Equation R(3)s(3) = U (3)q(3). The system R(3) s(3) = U (3)q(3)

could be solved in a similar way as in Sect. 3.1. The right-hand side equals

U (3)q(3) =







A0 Im0

T
(3)
1 0

T
(3)
2 0







(

q
(3)
1

q
(3)
2

)

=







A0 q
(3)
1 + q

(3)
2

T
(3)
1 q

(3)
1

T
(3)
2 q

(3)
1






.(47)

Thus, the system has the form

R(3)s(3) =







Im0

R
(2)
1

R
(2)
2













s
(3)
0

s
(3)
1

s
(3)
2






=







A0 q
(3)
1 + q

(3)
2

T
(3)
1 q

(3)
1

T
(3)
2 q

(3)
1






,(48)

from which we obtain independent equations

s
(3)
0 = A0 q

(3)
1 + q

(3)
2(49)

R
(2)
i s

(3)
i = T

(3)
i q

(3)
1 , i = 1, 2.(50)

The last two equations are again solvable by the procedure Finddy as in Sect. 3.1 with

the right-hand side T
(3)
i q

(3)
1 , i = 1, 2. But, owing to the structure of this vector, where
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only the first mi0- entries are nonzero, we suggest for its computation a modification
the already mentioned procedure Finddy.

The solution s
(3)
i of (50) can be expressed as s

(3)
i = p̂

(3)
i − ŝ

(3)
i , where p̂

(3)
i and ŝ

(3)
i ,

i = 1, 2 fulfill

R
(2)
i p̂

(3)
i = T

(3)
i q

(3)
1(51)

G
(2)
i q̂

(3)
i = (V

(2)
i )t p̂

(3)
i(52)

R
(2)
i ŝ

(3)
i = U

(2)
i q̂

(3)
i .(53)

In the matrix form

R
(2)
i p̂

(3)
i =









Imi0

Ri1

Ri2

Ri3



















p̂
(3)
i0

p̂
(3)
i1

p̂
(3)
i2

p̂
(3)
i3











=









Ti0 q
(3)
1

0
0
0









,(54)

from which we have immediately

p̂
(3)
i0 = Ti0q

(3)
1 , i = 1, 2(55)

p̂
(3)
ij = 0, i = 1, 2 j = 1, 2, 3.(56)

To find the solution of (52) means to solve the following matrix equation

(

Ĝ
(2)
i At

i0

−Ai0 0

)

(

q̂
(3)
i1

q̂
(3)
i2

)

=

(

At
i0 p̂

(3)
i0

−p̂
(3)
i0

)

.(57)

The last equation (53) represents the system

R
(2)
i ŝ

(3)
i =









Imi0

Ri1

Ri2

Ri3



















ŝ
(3)
i0

ŝ
(3)
i1

ŝ
(3)
i2

ŝ
(3)
i3











=











Ai0q̂
(3)
i1 + q̂

(3)
i2

Ti1q̂
(3)
i1

Ti2q̂
(3)
i1

Ti3q̂
(3)
i1











,(58)

from which we have

ŝ
(3)
i0 = Ai0 q̂

(3)
i1 + q̂

(3)
i2 , i = 1, 2(59)

Rij ŝ
(3)
ij = Tij q̂

(3)
i1 , i = 1, 2 j = 1, 2, 3.(60)

With the vector ŝ
(3)
ij available, we have the result

s
(3)
i = p̂

(3)
i − ŝ

(3)
i =











p̂
(3)
i0 − ŝ

(3)
i0

−ŝ
(3)
i1

−ŝ
(3)
i2

−ŝ
(3)
i3











, i = 1, 2.(61)

Finally, the computing of s
(3)
i , i = 1, 2 consists of the following steps:

PROCEDURE Finddysparse(R
(2)
i , Ai0, Ti1, Ti2, Ti3, T

(3)
i q

(3)
1 , s

(3)
i )

1. Set p̂
(3)
i0 = Ti0q

(3)
1 , i = 1, 2
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2. Solve the system (57)

3. (a) Set ŝ
(3)
i0 = Ai0q̂

(3)
i1 + q̂

(3)
i2 , i = 1, 2

(b) Solve Rij ŝ
(3)
ij = Tij q̂

(3)
i1 , i = 1, 2; j = 1, 2, 3

4. Set s
(3)
i = p̂

(3)
i − ŝ

(3)
i i = 1, 2.

Note that the Cholesky decomposition of the system matrices is available in step
2 and 3(b). These decomposition has been computed by the procedure Finddy.
In the end, the result of a three-stage stochastic model problem equals

dy(3) = p(3) − s(3).

This difference is obtained by the following computational process:

1. Call Finddy (R
(2)
i , Ai0, Di0, Ti1, . . . , Ti3, b

(3)
i , p

(3)
i ), i = 1, 2,

2. Call Updy(Ĝ(3), A0, v̂
(3)
1 , v̂

(3)
2 )

3. Call Finddysparse(R
(2)
i , Ai0, Ti1, Ti2, Ti3, T

(3)
i q

(3)
1 , s

(3)
i ) i=1,2

4. Form dy(3) as difference p(3) − s(3).
The procedures in steps 1 and 3 are independent and can be computed at the

same time. Step 2 represents a binding of existing two-stage models and enables to

calculate s
(3)
0 and the parameter q

(3)
i , i=1,2 for Finddysparse(). Roughly, the process

may be symbolically written as:

dy(3) =
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2 , ..., p

(3)
2 )
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(2)
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(3)
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Finddysparse(R
(2)
2 , ..., s

(3)
2 )






.(62)

4. Parallel implementation. The procedure

Finddy(R(2), A0, D0, T1, . . . , Tk, b, dy)

formulated for sequential calculation of the two-stage problem comprise three basic
parts expressed in the equations (14)-(16). These equations constitute a method for
computing of the vector dy. The vector dy consists in principle of k vectors that
correspond to the block matrices Ai, i = 1, 2, ...k (see 3) and the length of each is
equal to the number of rows of the corresponding matrix Ai. The parallel computation
can benefit from the fact that all procedures comprised in equations (14) and (16),
can be performed independently for every block row of the matrix R(2). The only
communication is inevitable in the equation (15) by establishing of the matrix G(2)

(13), where the elements of the matrix Ĝ(2) demand values that are dependent on the
input matrices Ai, i = 1, 2, ...k.

Similar practise can be used in the computation of the the three-stage algorithm.
The computational process according to the previous section can be expressed as

Step 1 Call Finddy (R
(2)
i , Ai0, Di0, Ti1, . . . , Ti3, b

(3)
i , p

(3)
i ), i = 1, 2, ...kk

Step 2 Call Updy(Ĝ(3), A0, v̂
(3)
1 , v̂

(3)
2 ), ...v̂

(3)
kk )

Step 3 Call Finddysparse(R
(2)
i , Ai0, Ti1, Ti2, Ti3, T

(3)
i q

(3)
1 , s

(3)
i ) i=1,2,...kk

Step 4 Form dy(3) as difference p(3) − s(3).

The calculations in the Step 1 and Step 3 are independent for all i, i = 1, ...kk
and as a consequence all Finddy() and Finddysparse() procedures can be computed
in parallel. As it was the case in the two-stage problem the only communication is
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present in the Step 2. As it is apparent from the Steps 1-4 the parallel algorithm of the
three-stage stochastic model based on the two-stage procedure has two levels of paral-
lelism. The outer level of parallelism reside in the parallel execution of the Finddy()
and Finddysparse() procedures for all i, i = 1, ...kk. The inner level of parallelism can
be found in the parallel execution of the procedure Finddy() (and Finddysparse(),
too) as it is described before. The independence of the most calculations comprised in
both algorithms constitute a very natural assumption for a MPI-based programming
framework. In all our experiments we have used the distributed memory programming
model. The calculations was executed on block matrices in parallel and the communi-
cation between the processes was done by the Message Passing Interface (MPI). From
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Fig. 1. Timing results for the two-stage problem with k=99 block matrices Ai

the numerical point of view the mathematical algorithms used in both described meth-
ods were based on the solving of systems of linear equations. A solving of a system
of linear equations was realized by factorization of the matrix of the system by the
Cholesky decomposition and solving of the linear system, whereby the triangular ma-
trix arised from the Cholesky factorization was used. In our experiments we have used
the the software linear algebra package LAPACK (Linear Algebra Package) [8] for all
linear algebra calculations. The high efficiency of this software package is based on
the use of a standard set of Basic Linear Algebra Subprograms (BLAS), which are
optimized for each computing environment and are transportable and efficient across
a wide range of computers.

k NP=2 NP=4 NP=8 NP=16 NP=32
16 8.81 4.27 2.77 3.18 4.38
30 13.92 8.48 6.11 5.53 5.84
40 20.66 9.81 7.43 6.67 5.76

Table 1

Timing results for the three-stage problem composed of 16 two-stage problems. The k denote

the number of block matrices in the two-stage problem. NP is the number of processors utilized. The

size of a block matrix Aiis 20× 40

All experiments presented in this paper were executed on the Beowulf-Cluster
Gescher at the VCPC, University of Vienna. This consists of one front-end with two
400MHz Pentium II processors, a subcluster with eight compute nodes, each with
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two 400MHz Pentium II processors and a subcluster with sixteen compute nodes,
each having four 700MHz Pentium III Xeon processors [9]. The Figure 1 show the
dependence of the execution time on the number of processors, whereby every process
was running on a different processor. In this example the size of all block matrices
Ai, i = 0, 1, ...k was 50×70 and the number of blocks k = 99. This experiment proved
the high degree of parallelism and almost linear speedup for number of processors
NP less than sixteen. For experiments with the three-stage algorithm three different
values for k, k = 16, 30, 40 (the size of the two-stage problem) were compared.The
size of matrices Ai, i = 1, 2, ...k was 20× 40 and was the same in all three cases. The
value kk (the number of two-stage problems) in experiments illustrated in the Table
1 was equal to 16 (outer loop). As it was the case by the two-stage problem the
best speed-up was achieved for smaller number of processes (processors). Decreasing
speed-up with increasing number of processors was caused by increasing overhead
and handling the I/O operations. Nevertheless an optimization of the code is possible
and experimenting with different parallelization strategies could help to improve the
performance.

5. Conclusion. The aim of our paper has been to use the BQ factorization tech-
nique for three-stage stochastic program in a framework of an interior point method.
As we can see, this technique leads to the solution of independent subproblems. More-
over, these subproblems are again scalable into smaller linear system of equations. The
whole process contains a serial coordination step, but the range of a sequential com-
putation is not critical for large-scale stochastic program. Experimenting with the
parallel code, testing the real problems and an extension to the multistage model will
be topics of our future work.
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