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NUMERICAL SOLUTION OF TWO-REGION

ADVECTION-DISPERSION TRANSPORT AND COMPARISON

WITH ANALYTICAL SOLUTION ON EXAMPLE PROBLEMS ∗

MILAN HOKR AND JIŘÍ MARYŠKA †

Abstract. We deal with a two-region porous media transport, which represent either solute
transport in a medium with immobile pore zone (double or dual porosity) or solute transport with
nonequilibrium sorption. The model consist of two coupled PDEs for mobile and immobile zone.
Numerical solution is based on the finite volume method, with explicit upstream scheme for advection
term and analytical solution of ODE representing the exchange between mobile and immobile zone.
For suitable 1D problem, with exactly solved plain advection-dispersion problem, we show that
after involving the effect of mobile-immobile exchange, the numerical solution is very close to the
analytical solution. The results in example cases give a groundwork information for a use of the
model for realistic problems.
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1. Introduction. The development of the model is motivated by the problem
of remediation of underground water after finishing the chemical mining activity in
Stráž pod Ralskem region. In the case of remediation, in comparison with the mining
itself, different physical and chemical processes have predominate influence to the
contaminant transport. One of the phenomena, which now needs to be included to the
used contaminant transport model, is the effect of immobile pore zone, in other words
blind pores, which contain contaminated solution, but can not be cleaned instantly
by moving water – the contaminants first diffuse to the zone with mobile water and
then they are removed. This effect is well observed on curves of time development
of concentration measured in pumping wells – the curve has a characteristic “tail”,
it does not fall to zero as quickly as in the case without the immobile zone. Correct
predictions of the drawn solute concentration are very important for planning the
industrial processing of the produced solution.

The presented numerical approach, based on explicit upstream scheme, differs
from models common in the literature. Although there is a complicated control of
the accuracy of dispersion calculation, the model gives reasonable results for practical
problems (in e.g. [4], concerning the model without the effect of non-equilibrium
exchange). In this paper, we focus on the numerical modelling of the non-equilibrium
exchange and we consider the advection-dispersion model under such conditions that
the given physical problem can be solved (i.e. the discretisation is appropriate and
the dispersion coefficient is in the specified limits (3.2)).

2. Physical and numerical model. The problem of solute transport in porous
media is governed by the advection-dispersion equation. The solute transport in media
with distinct mobile and immobile zones (dual-porosity media) can be described by
two-region model, first proposed in [2]. We consider two field of concentration cm(x, t)
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and ci(x, t) in the same computational domain, they represent the concentrations in
the mobile and immobile part (porosities nm and ni) of the representative volume.
The concentration in the immobile zone is influenced only by the exchange with the
mobile zone. The rate of exchange is assumed to be linear on the concentration
difference, with a coefficient α. The exchange enter the advection-dispersion equation
for the mobile zone as an additional source-sink term. The above is expressed by the
following system of equations

∂cm

∂t
+ ∇(v · cm) −∇ · (D∇cm) = c∗q+

s + cmq−s +
1

nm
α(ci − cm) ,(2.1)

∂ci

∂t
= − 1

ni
α(ci − cm) ,(2.2)

where cm, ci are the above mentioned concentrations (unknowns), v is the seepage
velocity, D is the dispersion coefficient (scalar), q+

s > 0 is the fluid source intensity,
q−s < 0 is the fluid sink intensity and c∗ is the given injected solute concentration.

2.1. Models of flow and transport. Besides directly entered input parameters
as e.g. porosity and initial and boundary conditions, the transport model needs the
field of the velocity v(x, t), a solution of Darcy-Law-flow model, to be given. The flow
model is not a subject of this paper, we just mention some important features.

The discretisations in flow and transport models are closely related to each other.
We used a mixed-hybrid finite element approximation of the flow problem, governed
by the Darcy Law and the mass balance equation [1]. The mathematical formulation
of the model and its numerical properties are presented in [5]. As the outputs, the
model provides values of pressure in element centers, values of pressure in side centers
and fluxes through interelement sides. Using the same geometrical discretisation and
the advection-calculation scheme (2.3) described below, we can use directly the value
of interelement flux in the place of velocity.

The practical implementation of the flow and transport model use trilateral pris-
matic elements, which are suitable for discretising layered geological structures and
convenient in algoritmical processing, because the mesh is not fully unstructured in
3D. Here presented numerical principles are independent on the element and volume
shapes and the equations are expressed in more general form.

2.2. Principles of the numerical solution. The transport in the mobile zone
is solved by the finite volume method (FVM) with the volumes geometrically identical
to the elements of the fluid flow model. We use a time-explicit scheme and we consider
the operator splitting for the approximation of the terms in the equation (2.1). In
certain time step, the advection is calculated (2.3) and then the exchange between the
mobile and immobile zone during is performed (2.8). The dispersion is not explicitly
incorporated into the numerical method, but our experience confirm that the real
dispersion can be roughly compensated by the numerical dispersion of the upstream
approximation of the advection term. The conditions for this assumption are discussed
in the section 3, the coefficient of the physical dispersion D and the mesh and time
step must be in the relation D ≈ 1

2v∆x and Cr � 1 (see below). It is possible to
match measurement results in practical calculations on naturally constructed meshes.

The limitations posed on dispersion calculation in the discussed model are a charge
for the less computational cost of the model: The explicit scheme for dispersion calcu-
lation require a stronger stability condition on ∆t and thus a markedly higher number
of time steps. The various types of implicit formulation, usually mentioned in the lit-
erature as a solution method for porous media transport, require a solution of a large
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non-symmetric matrix in each time step. The approaches of incorporating the non-
equilibrium exchange to an implicit-scheme model are discussed in [3] and compared
with a solution through discretisation of Laplace-transformed problem, which also
leads to a non-symmetric algebraic system.

2.3. Scheme and stability condition for advection. We use the following
scheme with cell-centered values of concentration in the mobile zone

Cn+1
k = Cn

k +
∆t

Vk
·
[

−
∑

j∈Nk

(U+
kjC

n
k + U−

kjC
n
j ) + Cn

k Q−

k + C̃n
k Q+

k

]

,(2.3)

where in the k-th cell: Cn
k is the value of (mobile) concentration in the n-th time

step (in time t = n∆t), Qk is the source/sink intensity of fluid , C̃n
k is the injected

concentration (given), Vk is the volume of the cell, Nk is the index set of neighbour
cells. Next, Ukj are the fluxes from k-th cell to j-th cell, and the superscripts + and −
denote a positive and negative “part” of a number (a+ = a for a ≥ 0 and a+ = 0 for
a < 0 etc.). We remark, that thanks to the properties of the mixed-hybrid flow model,
the relation Ukj = −Ujk automatically holds and thus the discretised transport model
keeps the mass-balance of the transported solute.

The stability condition for the scheme is

∆t
∑

j∈Nk

U+
kj ≤ Vk and ∆t

∑

j∈Nk

(−U−

kj) ≤ Vk ∀k ,(2.4)

which is a form of the well-known 1D condition Cr = v∆t
∆x ≤ 1 (CFL condition), where

Cr is the Courant number. This is a restrictive condition on the time step, which must
not exceed certain value, depending on the mesh and the velocity field. The practical
compliance of the condition is performed by successive halving of user-given time step,
until the condition (2.4) in all the discretisation volumes is fulfilled.

2.4. Calculation of the mobile-immobile exchange. For expression of the
exchange term, we derived a semi-analytical method. The operator splitting in the
system (2.1)-(2.2) leads to a solution of two coupled ODE in a given space point (or
discretisation volume) in each time step

dcm

dt
=

1

nm
α(ci − cm) ,(2.5)

dci

dt
= − 1

ni
α(ci − cm) ,(2.6)

which honour the mass balance nmcm +nici = const. The exact solution of (2.5)-(2.6)
for arbitrary time t ≥ 0 is

cm(t) =
(

c(0)
m − c̄(0)

)

e
−α

nm+ni

nmni
t
+ c̄(0)(2.7)

and by analogy for ci(t). We denoted c
(0)
m and c̄(0) = nmcm+nici

nm+ni
the initial values

for t = 0. Next, we denote α̃ = αnm+ni

nmni

the modified exchange coefficient and the

characteristical time of exchange T1/2 = ln 2
α̃ , which is the value used in practice

as input value of the model. The discretisation scheme for both mobile (m) and
immobile (i) concentrations is

Cn+1
i,m = (Cn

i,m − C̄n)e−α̃∆t + C̄n , C̄n =
nmCn

m + niC
n
i

nm + ni
,(2.8)
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where we omitted a symbol for mesh cell for readability and in the place of Cn
m, the

result of previous advection calculation (Cn+1
k in (2.3)) in the current time step enters.

The expression (2.8) can be used for any time step, thus, comparing with the
advection term alone, there is no more requirement on the time step of the model.

3. Discussion of the numerical behaviour. In general, the explicit upstream
discretisation of the advection term brings a strong artificial dispersion, which depend
on the relation of the mesh size, time step and fluid velocity, expressed by the Courant
number Cr. We regard this effect from another side, that the numerical method calcu-
lates correct results of certian problem with a changed value of dispersion coefficient.
Thus a possible way how to solve a given advection-dispersion problem is to use the
reduced value D′ = D − Dnum, where D is the dispersion in the modelled physical
system and D′ is the dispersion as the input value of the model (see [7]). In our case,
with no physical dispersion in the model, we have to approximate the value of D by
the numerical dispersion (choice of ∆x, ∆t) in the calculation of the advection.

In general, for 3D problem and non-uniform mesh, it is difficult or impossible
to exactly express the value of numerical dispersion. There exist a relation for one-
dimensional problem with uni-directinoal fluid flow ([7])

Dnum =
1

2
v∆x(1 − Cr) ,(3.1)

which gives also a basic estimation for a more-dimensional case. Fulfilling the stability
condition Cr ≤ 1, we have the following limits for Dnum:

Dnum = 0 for Cr = 1 and Dnum → 1

2
v∆x = Dmax

num for Cr → 0 .(3.2)

With a given mesh and velocity, we can control the value of dispersion within the
specified limits by a choice of time step. The limits can be modified by a choice of
the mesh (∆x). The previous idea can be approximately generalized to a 3D model,
where we consider some characteristic dimension of a cell instead of ∆x.

To explain the substitution of the two processes of different matter – physical and
numerical dispersion – we have to answer the following questions:

The first one is, for given D, how to construct the mesh such that Dnum ≈ D.
This is not possible in general, but it can be done for advection-dominated problems
satisfactorily. In practical problems, the dispersion value D can not be well measured,
usually it is not given and the intensity of dispersion is verified by a model calibration.
In our model, we check the mesh instead of D. Since the sensitivity of result to the
value D is small and the other input values and measurement are known very roughly,
it is not a critical matter to find an acceptable mesh.

Next, the non-uniform mesh and general field of velocity make the expression of
the dispersion in the numerical model more complicated. We introduce a distribution
of Courant number in a typical problem of “well-driven” flow (determined by drawing),
with the mesh appropriatly constructed: finer around the wells and coarser near
the boundary. The values for a realistic problem with 20 working wells and for a
demostrative problem with one well in the same domain are in the table 3.1.

It is clear to see that Cr � 1 for most of the computational domain, except of the
cells very close to the wells. Thus, in fact, we apply a model with almost homogeneous
dispersion coeficient, which can be roughly estimated by 1

2v∆x.
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Table 3.1

Distribution of Courant number for a typical remediation problem, with a mesh adapted to the
velocity field (approx. 12000 cells).

interval of Cr cell count in 20-wells problem cell count in 1-well problem
(0.5, 1) 2 (0.02%) 2 (0.02%)
(0.25, 0.5) 32 (0.28%) 1 (0.01%)
(0.1, 0.25) 87 (0.72%) 12 (0.1%)
(0, 0.1) 98.98% 99.87%

4. Example and test problem. We consider a 1D problem in the interval
(0, L) with the following initial and boundary conditions (the domain is “clean” in
the beginning and the solution of given concentration inflows from the left side) and
material parameters:

cm(x, 0) = ci(x, 0) = 0 ∀x ∈ (0, L) ,

cm(0, t) = 1 ∀t > 0 ,(4.1)

nm = 0.2 , ni = 0.2 .

The flow velocity is given by a Dirichlet problem with given values of the pressure
head at the boundary points, pD(0) = 200m and pD(L) = 100m. With a permeability
K = 1m/d and domain size L = 1000m, we calculate the Darcy velocity q = 0.2m/d
and the seepage velocity v = 1m/d (the time is measured in days). The value of
dispersion coefficient D will be considered according to the discretisation in the nu-
merical calculation below and we will use a set of values of the exchange coefficient
for comparisons (table 4.1).

4.1. Numerical solution. Using the 3D model with layer-ordered trilateral
prismatic elements, we solve the above stated 1D problem on the mesh (figure 4.1)
without any division in the rest directions. The lateral dimensions (b, h in the figure)
are 50m and the total length 1000m is divided into 200 parts, which is 400 cells in
total. The distance of neighbouring cell-centers is uniform, we can denote ∆x = 2.5m.

The time step is chosen such that Cr = 1
2 , i.e. ∆t = 1.25d. Thus, according to

(3.1), our advection model solves the advection-dispersion problem with the coeffi-
cient value D = 0.625m2/d. For the purpose of numerical–analytical comparison and
display, the problem is solved in the time interval of 500 days: the “wave front” reach
the half of the domain length and the whole concerned concentration curve can be
observed. The rate of exchange is chosen through the values T1/2 (table 4.1), such
that the calculations cover the interesting behaviour in the interval (0,∞) of T1/2.

4.2. Analytical solution. We use the analytical solution presented in [6], with
minor modifications. First, the model is transformed to a dimensionless form

β
∂Cm

∂T
= −∂Cm

∂X
+

1

P

∂2Cm

∂X2
+ ω(Ci − Cm) ,(4.2)

(1 − β)
∂Ci

∂T
= −ω(Ci − Cm) ,(4.3)

where

X =
x

L
, T =

vt

L
, β =

nm

nm + ni
,(4.4)

P =
vL

D
(Peclet number) and ω =

αL

nmv
.(4.5)
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Fig. 4.1. The mesh for example calculation of 1D transport.

Table 4.1

Values of T1/2 chosen for the example calculations and comparison of numerical and analytical
solutions. The values of ω are appropriately derived for the use in the analytical solution.

T1/2 [days] ω (dimensionless)
∞ (turned-off exchange) 0
1000 0.3475
100 3.475
10 34.75
1 347.5
0 ∞ (not calculated)

The concentration is transformed by Cm,i = cm,i/C0 with arbitrary value of charac-
teristic concentration C0 (we choose 1 in the appropriate dimension), this does not
have any influence on the solution behaviour. The characteristic lenght L is consid-
ered as the dimension of problem domain. The initial and boundary condition of the
problem (4.1) can be obviously directly applied in the transformed model. We apply
no boundary condition for x = L, while there is no such boundary condition required
in the numerial calculation and the presented analytical solution refers to the problem
with semi-infinite domain (but only a part, given by the length L is concerned).

The solution Cm(X, T ) for above specified conditions is

Cm(X, T ) = G(X, T ) · exp
(

− ωT

β

)

(4.6)

+

T
∫

0

G(X, τ) · exp(−a − b) ·
( 1

β
I0(2

√
ab) +

√

τ

β(1 − β)(T − τ)
· I1(2

√
ab)

)

dτ ,

where I0 and I1 are the modified Bessel functions of order zero and one respectively,

a = ωτ
β , b = ω(T−τ)

1−β and

G(X, τ) =
1

2
erfc

(βX − τ
√

4βτ
P

)

+
1

2
exp(PX) · erfc

(βX + τ
√

4βτ
P

)

(4.7)

is in fact the solution of a plain advection-diffusion problem. For advection-dominated
problems (i.e. P � 1), the first term in (4.7) is dominant and the second one can be
neglected (the second term provides to fulfil the boundary condition while the first
term is a solution of a problem on a “both-side infinite” domain).
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Fig. 4.2. Comparison of numerical and analytical solution of 1D problem of two-region nonequi-
librium transport. The horizontal axis is the length in metres, the vertical axis is the dimensionless
concentration. The curves are labelled by the values of exchange coefficient T1/2 used for the calcu-
lations.

The calculation of the analytical solution requires numerical integration. It is
interesting to remark, that the computational cost of the evaluation of the analytical
solution is comparable with the numerical solution of the problem. The algebraical
operations are relatively sensitive to computational errors (reductions of large values of
the exponential functions), which causes some unnatural fluctuation of the displayed
curves.

4.3. Comparison and discussion. For comparison, we transform the numeri-
cally solved problem to the dimensionless form and than we can directly draw graphs
of the functions. The transformed parameters are

β = 0.5, P = 1600(4.8)

and the values of ω in the table 4.1. The resulting graphs are in the figure 4.2. The
numerical and analytical solutions are almost identical in a graphical comparison.
This accuracy is more than sufficient from a point of view of practical modelling,
when the material parameters are known very roughly.

The important result of this study is that the proposed integration of the advec-
tion model (2.3) and the mobile-immobile exchange model (2.8) does not damage the
overall approximation of the solved problem (2.1)-(2.2). We can easily accept this
idea also for 3D problems with non-uniform mesh.

Next, the graphs show various interesting properties of the nonequilibrium trans-
port. In the figure 4.2, the results for the limit values of T1/2 (i.e. for no exchange and
for an instant exchange) are displayed. The case of instant (equilibrium) exchange
is governed by the advection-dispersion equation with a retardation factor R > 1 at
the time-derivative term, which causes that the advection and dispersion run appro-
priately slower. Our results correspond with this model: since R = nm

nm+ni
= 2, the

curve for instant exchange match the curve for no exchange except that it moves with
a half velocity.

In the figure 4.3, we can observe the results for both mobile and immobile zone
calculated by the numerical model. The continuous move of the contaminant from
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Fig. 4.3. Numerical solution of 1D problem of two-region nonequilibrium transport, the relation
of mobile and immobile concentrations is demonstrated. The horizontal axis is the length in metres,
the vertical axis is the dimensionless concentration. The curves are labelled by the values of exchange
coefficient T1/2 used for the calculations.

mobile to immobile zone is expressed in the difference between the two curves. The
smaller is the time T1/2, the quicker is the exchange and the closer is the process to
an equilibrium.

5. Conclusion. We presented an efficient numerical approach for the two-region
model of the solute transport in dual-porosity media. We concentrated on study of the
effect of numerical dispersion in the upstream scheme and on the influence of mobile-
immobile exchange. The numerical results on the example problem with appropriately
chosen parameters correspond to the analytical solution, which confirm no undesirable
interaction between the two processes in the model. A realistic remediation problem
with physical dispersion in reasonable limits can be sufficiently accurately modelled
by the presented approach.
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