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NEW VERSION OF MATCHING PURSUIT DECOMPOSITION

WITH CORRECT REPRESENTATION OF LINEAR CHIRPS ∗

MONIKA KOVÁČOVÁ † AND MIRIAM KRISTEKOVÁ‡

Abstract. In this paper we describe a new version of matching pursuit algorithm, that de-
composes any signal into a linear expansion of the functions selected from the redundant set called
dictionary. A matching pursuit selects the signal structures that are coherent to the used dictionary.

Matching pursuit decomposition algorithm (MPD) with a dictionary based on the Gabor fun-
ctions is an excellent tool for the time-frequency analysis of non-stationary signals. However, original
Gabor dictionary does not represent signals with time-depending frequency modulations correctly.
We present here a new generalization of the Gabor dictionary and corresponding extension of MPD
algorithm that allows one to correctly and uniformly represent also the signals with linear chirps
included in their structure.
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1. Introduction. The focus of this manuscript is the problem of obtaining effi-
cient representations of functions. We seek to approximate functions with linear
combination of a small number of unit functions from a family {gγ}γ∈Γ in a Hilbert
space H . For any M > 0, we want to minimize the error

ε(M) = ‖f −
∑

γ∈Λ

αγ gγ‖ ,

where Λ ⊂ Γ is an index set of cardinality M . Representations of this form are central
importance in numerous applications. If we can accurately approximate f with a
linear combination of a small number of the functions gγ , then we need store a small
number of coefficients αγ and indexes γ. For numerical methods, such representations
can reduce the computational complexity on f to a small number of computations
performed on each gγ in the expansion of f , which means fast calculation.

When {gγ}γ∈Γ is an orthogonal basis, we can minimize the approximation error
ε(M) by taking Λ to be functions corresponding to the largest M inner products
(|〈f, gγ〉|)γ∈Γ, since

ε(M) =
∑

γ∈Γ−Λ

|〈f, gγ〉|2 .

For the case that the Hilbert space H has a finite dimension N and the set Γ
contains only the finite number of the orthogonal functions, the expansion which
minimizes ε(M) is not difficult to compute.
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Decomposition of signals over family of functions that are well localized both in
time and frequency have found many applications in signal processing and harmonic
analysis. Such functions are called the time-frequency atoms . In this paper we will
describe a new version of the algorithm, called matching pursuit decomposition algo-
rithm (MPD), that decomposes any signal into a linear expansion of the functions,
that are selected from the redundant set, called a dictionary. These functions are
searched in order to best match the signal structure. Matching pursuits are general
procedures to compute an adaptive signal representation. With a dictionary based on
the Gabor functions the MPD algorithm is an excellent tool for the time-frequency
analysis of non-stationary signals. However, the original Gabor dictionary does not
represent signals with time-depending frequency modulations correctly. We observe
for example, for two different signals very close time-frequency representations (see
the next Figure). Consequently, we can not identify the presence of waveforms with

the frequency modulation. Because signals with nonlinear frequency modulation are
of great importance in seismology, we have developed a new generalization of the Ga-
bor dictionary and corresponding extension of the MPD algorithm that allow one to
correctly represent also the signals with linear chirps and distinguish them from su-
perpositions of waveforms with constant frequency modulation (see the next Figure).

2. Matching Pursuit in Hilbert Space. The general issue is to find algorithm
to expand functions over a set of functions (or over the dictionary).The idea of the
pursuit to represent a function has been known to statisticians for a long time. It can
be found, for example, in a 1981 publication [4] by Friedman and Stuetzle, where the
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authors consider the problem of non-parametric regression. The general algorithm,
called MPD, which performs such an adaptive decomposition for the time-frequency
dictionary was described in [5], at first. We introduce here the short idea how it
works.

Let H be a Hilbert space. The dictionary D = (gγ)γ∈Γ was defined as a set of the
functions in H , such that ‖gγ‖ = 1. Let V be the closed linear span of the dictionary
functions. We require that the finite linear expansions of functions in D are dense in
space V . We say that the dictionary is complete if and only if V = H .

Let f ∈ H . We want to compute a linear expansion of f over a set of functions
selected from D, in order to best match its structures. This done by successive
approximations of f with orthogonal projections on elements of D. Let gγ0

∈ D. The
function f can be decompose into

f = 〈f, gγ0
〉gγ0

+ Rf ,(2.1)

where Rf is the residual function after approximating f into direction of gγ0
. Clearly

gγ0
is orthogonal to Rf and we get energy conservation law for this step

‖f‖2 = |〈f, gγ0
〉|2 + ‖Rf‖2 .(2.2)

To minimize ‖Rf‖, we must choose gγ0
∈ D such that |〈f, gγ0

〉| is maximum. In some
cases, it is possible to find a function gγ0

that is almost the best in the sense that

|〈f, gγ0
〉| ≥ α sup

γ∈Γ
|〈f, gγ〉| ,(2.3)

where α is an optimality factor satisfies 0 < α ≤ 1.
A matching pursuit is an iterative algorithm that sub-decomposes the residue

Rf by projecting it into the family functions D that match Rf almost the best, as
was done for f . This procedure is repeated each time on the following residue that
is obtained. We mention that the choice of a function gγ0

that satisfies (2.1) is not
random. We will present in the next section, that the axiom of choice guaranties that
there exists at least one choice function, but in practice there are many ways to define
it, and it depends upon the numerical implementation.

Let us explain by induction, how the MPD-algorithm works. Let R0f = f . We
suppose that we have computed the nth order residue Rnf , for n ≥ 0. We choose,
using the choice function C, an element gγn

∈ D, which best match the residue Rnf

in the sense of the choice function

|〈Rnf, gγn
〉| ≥ α sup

γ∈Γ
|〈Rnf, gγ〉| .(2.4)

The residue Rnf can be also decomposed into

Rnf = 〈Rnf, gγn
〉gγn

+ Rn+1f ,(2.5)

which defines the residue at the order n+1. Since Rn+1f is orthogonal to gγn
energy

conservation law has the form

‖Rnf‖2 = |〈Rnf, gγn
〉|2 + ‖Rn+1f‖2 .

If we stop the decomposition process at the step m, the signal f is decomposed into
the sum

f =

m−1
∑

n=0

〈Rnf, gγn
〉gγn

+ Rmf .(2.6)
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Similarly, we maintain in the energy laws

‖f‖2 =
m−1
∑

n=0

|〈Rnf, gγn
〉|2 + ‖Rmf‖2 .

The original function f is decomposed into a sum of dictionary elements, that
are chosen to best match its residues. Although this decomposition is nonlinear, we
maintain an energy conservation as if it was a linear orthogonal decomposition.

A major issue is to understand the behaviour of the residue Rmf when m in-
creases. The mathematical similarities between the Jones algorithm [2] and MPD
algorithm allowed Mallat in [5] to prove the next theorem.

Theorem 2.1. Let V be a closed linear span of functions in D. Let us denote
by W the orthogonal complement of V in H. The orthogonal projectors over V and
W are written as PV and PW .

Let f ∈ H. The residue Rmf defined by the induction (2.6 ) satisfies

lim
m→∞

‖Rmf − PW f‖ = 0 .

Hence PV f =
∞
∑

n=0
〈Rnf, gγn

〉gγn
. When the dictionary is complete, which means

that V = H , then PV f = f and PW f = 0.

After m iterations we decompose signal into the form (2.6). If we stop the algo-
rithm at this stage and record the coefficients (〈Rnf, gγn

〉, gγn
)0≤n<m, the decompo-

sition error will be equal to Rmf . However, this sum is not linear expansion of the
functions (gγn

)0≤n<m that approximates f at best. We simply derive from (2.6) that

PVm
f =

m−1
∑

n=0

〈Rnf, gγn
〉gγn

+ PVm
Rmf .

If the family of functions (gγn
)0≤n<m is not orthogonal, which is generally the case,

then PVm
Rmf 6= 0. So, we must compute PVm

Rmf once more. The computation of

PVm
Rmf =

m−1
∑

n=0

αn gγn
(2.7)

is called a back projection. Instead of storing the inner products 〈Rnf, gγn
〉, we must

to store 〈Rnf, gγn
〉+αn in order to recover PVm

f . Calculation of αn requires to solve
linear system of equation, which was described in detail in [1].

3. Matching Pursuit Algorithm with Time-Frequency atoms. The fami-
ly D = (gγ)γ∈Γ is extremely redundant, and its properties have been studied by [6] for
the case of the Gabor dictionary [1, 5]. Elements were defined by set of parameters
γ = (s, u, ν) by scaling (s), translating (u) and constant frequency modulating (ν) a

single Gaussian window g(t) = 21/4e−πt2 and had the form gγ(t) = 1√
s
g

(

t−u
s

)

eiνt.

gγ(.) are called Gabor functions. Our dictionary D, defined by functions (3.1), has
the similar properties.

In this paper we put H = L2(R) such that ‖f‖ =
∫ ∞
−∞ |f(t)|2dt < ∞. Each

dictionary element function gγ is defined by

gγ(t) =
1√
s
g

(

t − u

s

)

ei(ν0+ν1t)t ,(3.1)
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where the index γ = (s, u, ν0, ν1) is an element of the set Γ = R+ × R3. The fac-
tor 1√

s
normalizes to 1 the norm of gγ(t). The dictionary D is generated by sca-

ling (s), translating (u) and modulating (ν0, ν1) a single Gaussian window function

g(t) ∈ L2(R) , g(t) = 21/4e−πt2 . For ν1 = 0 , gγ(.) in (3.1) defines original Gabor
dictionary.

The aim of this paper is to include elements with linear frequency modulation
within the dictionary elements. The larger collection of the dictionary elements may
provide more freedom in the representation of the signals as the unique expansions to
the linear combination of the basis elements.

The matching pursuit decomposition algorithm depends upon a choice function
that selects at each iteration a function gγn

among all functions that satisfy (2.3).
Unfortunately, the decomposition is in general not unique, the coefficients in the
decomposition represent redundant information, and one has to compare several de-
compositions of the same signal and look for optimal representations.

We say that a subset Λ ⊂ Γ is admissible and associated to f ∈ L2(R) if

Λ = {β ∈ Γ, |〈f, gβ〉| ≥ α sup
γ∈Γ

|〈f, gγ〉|} .(3.2)

Let Λ be an admissible set and (a, c, b0, b1) ∈ R+ × R3. Let

Λ(a,c,b0,b1) = {β = (s, u, ν0, ν1) ∈ Γ :
(

s

a
,
u − c

a
, a(ν0 − b0) + 2ac(ν1 − b1), a

2(ν1 − b1)

)

∈ Λ

}

.(3.3)

A choice function C is said to be covariant if and only if for any admissible set Λ,
C(Λ) = (s0, u0, ν00, ν10), where C is a choice function, implies that

C(Λ(a,c,b0,b1) =

(

s0

a
,
u0 − c

a
, a(ν00 − b0) + 2ac(ν10 − b1), a

2(ν10 − b1)

)

.(3.4)

If we restrict our signal to the bounded and absolutely integrable functions , the
matching pursuit residues will be also bounded and absolutely integrable. Covari-
ant choice function C(.) can be then defined as follows: For any admissible set Λ ,
C(Λ) = (s1, u1, ν01, ν11) such that

s1 = sup{s, ∃ (u, ν0, ν1) ∈ R3, (s, u, ν0, ν1) ∈ Λ}
u1 = sup{u, ∃ (ν0, ν1) ∈ R2, (s1, u, ν0, ν1) ∈ Λ}
ν01 = sup{ν0, ∃ ν1 ∈ R, (s1, u1, ν0, ν1) ∈ Λ}
ν11 = sup{ν1, (s1, u1, ν01, ν1) ∈ Λ}

The following Theorem proves that the index (s1, u1, ν01, ν11) is well defined and
belongs to Λ.

Theorem 3.1. For any admissible set Λ , associated to a bounded and absolutely
integrable function, (s1, u1, ν01, ν11) ∈ Λ.

Proof. We only give the main ideas of the proof.
The basic idea of the proof is to take Λ as an admissible index set associated to

f . Since g(t) = 21/4e−πt2 is bounded and f(t) is absolutely integrable, one can prove
that

lim
s→∞

sup
u,ν0,ν1∈R3

|〈f, gγ〉| = 0 .
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We can thus derive that there exists a finite s1 that is the supremum of all s such
that (s, u, ν0, ν1) ∈ Λ. Since lim

|t|→∞
|g(t)| = 0 and f(t) is absolutely integrable, we can

prove that for γ = (s1, u, ν0, ν1),

lim
u→∞

sup
ν0,ν1∈R2

|〈f, gγ〉| = 0 .

We can then derive that there exists u1 that is the supremum of all u such that
(s1, u, ν0, ν1) ∈ Λ. Since Λ is closed, there exists ν0 such that (s1, u1, ν0, ν1) ∈ Λ.

Similarly, we conclude from lim
|ω|→∞

|ĝ(ω)| = 0 and f̂(ω) is absolutely integrable, that

for γ = (s1, u1, ν0, ν1)

lim
ν0→∞

sup
ν1∈R

|〈f, gγ〉| = 0 ,

hence that for γ = (s1, u1, ν01, ν1)

lim
ν1→∞

〈f, gγ〉| = 0 ,

We can finally derive that ν01 and ν11 are the supremas of all ν0 resp. ν1 fall into the
closed Λ.

Let us prove the covariance of a matching pursuit based on the above defined
covariant choice function. Let us define

f1(t) =
d√
a
f0

(

(t − c)

a

)

ei(b0+b1t)t .(3.5)

Let γ1 = (s, u, ν0, ν1) and γ0 =
(

s
a , u−c

a , a(ν0 − b0) + 2ac(ν1 − b1), a
2(ν1 − b1)

)

. We
can show that

〈f1, gγ1〉 = 〈f0, deic((ν0−b0)+(ν1−b1)t)gγ0〉 = deic((b0−ν0)+(b1−ν1)t)〈f0, gγ0〉 .(3.6)

Hence supγ∈Γ |〈f1, gγ〉| = d supγ∈Γ |〈f0, gγ〉|. According to the definition Λ (3.2) the
equation (3.6) proves that the set Λ(a,c,b0,b1) also satisfies

Λ(a,c,b0,b1) = {β ∈ Γ, |〈f0, gβ〉| ≥ α sup
γ∈Γ

|〈f0, gγ〉|} .

The covariance of the choice function implies that if C(Λ) = γ1
0 = (s0, u0, ν00, ν10)

then C(Λ(a,c,b0,b1)) = γ0
0 =

(

s0

a , u0−c
a , a(ν00 − b0) + 2ac(ν10 − b1), a

2(ν10 − b1)
)

. We
can thus derive that

Rf1(t) =
d√
a
Rf0

(

(t − c)

a

)

ei(b0+b1t)t .

Similarly we can prove by induction that

Rnf1(t) =
d√
a
Rnf0

(

(t − c)

a

)

ei(b0+b1t)t ,

and if γ1
n = (sn, un, ν0n, ν1n) then

γ0
n =

(

sn

a
,
un − c

a
, a(ν0n − b0) + 2ac(ν1n − b1), a

2(ν1n − b1)

)

and

〈Rnf1, gγ1
n
〉 = deic((b0−ν0n)+(b1−ν1n)t)〈Rnf0, gγ0

n
〉 .

Hence a MPD based on covariance choice function (3.4) is covariant by dilation (s),
translation (u) and modulation (ν0, ν1).
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4. Numerical Experiments. For a single-component frequency modulated sig-
nal, our intuition suggests that the time-frequency representation should be concen-
trated near the curve of the instantaneous frequency νf (t). We can decompose our
non stationary signal to a set of unimodular signals using the MPD algorithm. For
simplicity can be supposed, that instantaneous amplitude is constant and equal to 1.
The“ ideal” situation would be that the time-frequency transformation has the form
Czf

(t, ν, f̃) = δ(ν − νf (t)), where zf (t) be the associates analytic signal to f(t) and

Cf (t, ν, f̃) =

∫ ∫ ∫

R3

ei2πξ(s−t)f̃(ξ, τ)f(s +
τ

2
)f∗(s − τ

2
)e−i2πντ dξ ds dτ

means the standard definition of Cohen’s class transformations [3].
Our dictionary’s element is a linear chirp characterized by νx(t) = ν0 +ν1t. Some

direct computations show that

Czf
(t, ν, f̃) =

∫ +∞

−∞
f̃(ν1τ, τ)e−i2π(ν−νx(t))τ dτ .

Hence for a nonzero slope ν1 of the modulation, the only solution is given by
f̃(ξ, τ) = 1, and this characterizes the Wigner distribution. On the other hand,
for a pure frequency ν1 = 0 every definition according to a parameter function with
f̃(0, τ) = 1 is suitable. This evidently agrees with the fact that this same condition
guarantees a correct marginal distribution in frequency.

Since a time-frequency atom dictonary is complete, Theorem 2.1 and Theorem
3.1 prove that a matching pursuit decomposes any function f ∈ L2(R) into

f =

∞
∑

n=0

〈Rnf, gγn
〉gγn

,(4.1)

where

gγ(t) =
1√
s
g(

(t − u)

s
)ei(ν0+ν1t)t ,

and the index γ = (s, u, ν0, ν1). These atoms are chosen to the best match the residues
of f . In the previous section was proved that there exists a class of choice functions

such that f1(t) = d√
a
f0( (t−c)

a )ei(b0+b1t)t if and only if for all n ≥ 0

s0
n =

s1
n

a
, u0

n =
u1

n − c

a
, ν0

0n = a(ν1
0n − b0) + 2ac(ν1

1n − b1), ν1
1n = a2(ν1

1n − b1) ,

and

〈Rnf1, gγ1
n
〉 = deic((b0−ν0n)+(b1−ν1n)t)〈Rnf0, gγ0

n
〉 .

From the decomposition of any f(t) we derive a new time-frequency energy distri-
bution, by adding the Wigner distribution of each selected atom. According to the
previous reasons this distribution match efficiently any signal structure and localizes
it well in the time-frequency plane, regardless of whether this localization is in time
or in frequency. So we can associate a time-frequency energy distribution with

E f(t, ω) =

∞
∑

n=0

|〈Rnf, gγn
〉|2Wgγn

(t, ω) ,
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where for our choice of the gaussian window g(t) = 21/4e−πt2 we get

Wgγn
(t, ω) = 2exp

[

−2π

(

(t − u)2

s2
+ s2ω2

)]

.

Its energy is concentrated in the time and frequency domains where gγn
is localized.

As was mentioned before, the decay of ‖Rnf‖ depends upon the correlation be-
tween the residues and the dictionary elements, i.e. how the dictionary is to appropri-
ate for a given signal. In the Figure 4.1.(a) we can see the decay of ‖Rnf‖ for original
and our improved MPD for highly nonstationary signal with linear chirps (the same
signal as in Figure 4.2.). The decay is faster for our improved “linear” MPD, hence
the our new algorithm converges more quickly for such a type of complicated signal.
Although average time for one iteration is greater in “linear” case (t̄ = 7.37) then for
original MPD (t̄ = 6.68), due to its faster convergency the “ linear” version is much
more efficient and total computational time is shorter (Figure 4.1.(b)) for given level
of energy represented.
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Fig. 4.1. (a) Comparison of residual decay for “original” and our improved “linear” MPD,

(b) Percentages of total signal energy represented

(

∑

n(|〈Rnf,gγ 〉|·gγ)2

‖f‖2

)

versus computational time

required.

In Figure 4.2. the time-frequency planes are compared for the Mallat-Zhang
highly non-stationary test signal, presented in [5]. Our time-frequency representa-
tion is more compact and the energy is better localized than with original Mallat’s
dictionary. The linear chirps are correctly represented.
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Fig. 4.2. Time-frequency analysis of complicated nonstationary Mallat test signal (superpo-
sition of truncated sinusoids, Dirac impulses, waveforms centered at various time and frequency
positions, waveforms with linear dispersion - chirps.) (a) Calculated with the original matching
pursuit decomposition (result of 60 iterations) (b) Calculated with our improved matching pursuit
decomposition (result of only 20 iterations).


