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CONTAMINANT TRANSPORT IN DUAL-WELL FLOW

B. MALENGIER ∗ AND J. KAČUR †

Abstract. We present a new solution for contaminant transport in dual-well flow. The numerical
approximation is based on a dipol transformation of a convection-diffusion model for the contaminant
transport in a finite rectangular domain with stream lines parallel to one of the axis. The transport
and the diffusion part are split along the time intervals. The transport is reduced to the solution of
a multiple Riemann problem with semi-analytic solution. The numerical experiments are compared
in a specific case with the semi-analytical solution.
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1. Introduction. Contaminant transport with adsorption is a very dynamical
and difficult research area. Precise mathematical models are available, and a big effort
has been done to develop effective mathematical tools to obtain a desired solution. In
practical implementations the precise physical data in the model are required (hydro-
dynamical and geophysical). Some of them can be obtained only in authentic fields,
where these models will be applied. The diffusion part of the model is generated by
dispersivity properties of the considered porous media, where the contaminant trans-
port is considered. The dispersivity properties are characterized by longitudinal αL

and transversal αT coefficients. Their determination (calibration of the model) can
be realized by dual-well tests with a steady state flow regime. In one of the wells
the water is injected and in the other one it is extracted. In the injection well we
can implement a tracer and then at the extraction well we measure the response in
the form of the time evolution of the extracted tracer (break through curves (BTC)).
From the shape of the BTC we can restore the corresponding parameters αL, αT

under the assumption that other datas of the model are known.
For the flow model we use the Dupuit-Forchheimer approximation leading to a

two dimensional flow in an aquifer. We also use the assumption that the porous
medium is homogeneous. On the other hand we do not assume that the aquifer is
confined as it is done in many other approximate models. We assume that in the
neighbourhood of the injection well the aquifer is confined, while in a neighbourhood
of the extraction well it is unconfined.

2. Mathematical model. The steady state flow, under the Dupuit-Forchheimer
approximation (see [H]), is governed by the elliptic equation

∆Φ = 0, in R
2\Br1(−d, 0) ∪Br2(d, 0), (2.1)

(Br(x, y) denotes a ball with the radius r and the center (x, y)), with the boundary
conditions

Φ = Φ1 on ∂Br1 , Φ = Φ2 on ∂Br2 . (2.2)
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Fig. 2.1. Boundary of the domain Ω in (x, y) coordinates. Injection well x = d, extraction well
at x = −d.

Here, Φ denotes the flow potential, r1 and r2 are the well diameters, and d is half the
distance between the wells. The flow potential in the (unbounded) aquifer of height
H , relates to the pressure-head h = h(x, y), namely

Φ(x, y) = khH −
1

2
kH2, if Φ ≥ 1

2kH
2 (2.3)

Φ(x, y) =
1

2
kh2, if Φ ≤ 1

2kH
2, (2.4)

where k is the hydraulic permeability. The curve
√

2Φ(x,y)
k = H (Φ is a solution of

(2.1), (2.2) ) seperates the confined and unconfined zones. Due to the symmetry along
the x-axis, we solve (2.1) and (2.2) only in the upper half plane, see Fig. 2.1

The transport equation for a tracer, C, has the form - see [B]

heff∂tC = div(Dheff∇C) − div(heff vC), (2.5)

where D is the dispersivity tensor

Dij =

{
(D0 + αL |v|)δij +

vivj

|v|
(αT − αL)

}
,

heff := min {h,H}, and

v = −
1

heffθ0
∇Φ,

where θ0 is the porosity.
A precise solution of (2.1-2.5) is required to determine αL, αT (inverse problem).

3. Method of solution. Problem (2.1), (2.2) can be efficiently solved using
a conformal mapping (see [C-K]). This leads to a bipolar transformation of Ω to

Ω̃ ≡ (0, π) × (v(1), v(2)) - see Fig 3.1 - with new variables u, v given by

x =
δ

2

sinh v

cosh v − cosu
, y =

δ

2

sinu

cosh v − cosu
,

where we obtain δ from
√
r21 +

1

4
δ2 +

√
r22 +

1

4
δ2 = 2d, (2d > r1 + r2).
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Fig. 3.1. Boundary of the domain Ω̃ in (u, v) coordinates.

Then Φ̃(u, v) = Φ(x, y) depends only on v-variable, since the streamlines and the
equipotential curves of Φ create the lines parallel with (u, v)-axes. The values v(1),
v(2) are obtained from

sinh v(1) = −
δ

2r1
sinh v(2) =

δ

2r2
.

Then Φ̃(u, v) = Av+B, where A, B are determined by the boundary conditions (2.2).
It holds

Av(1) +B = Φ1 ≡
1

2
kh2

1, Av(2) +B = Φ2 ≡ kh2H −
1

2
kH2,

in the assumption that Br1 is the extraction well and h1 < H . We can identify the
pressure-head with the water level (the stratum is the bottom of aquifer). In the
injection well we have the water level h2 > H . Other possibilities, e.g. H < h1 < h2;
h1 < h2 < H , can also be included.

Applying the same transformation to the contaminant transport equation (2.5),
gives (see [C-K]):
(i) for h > H ,

∂tC =
4λ2

δ3θ0H

{
∂u

[(
D0θ0Hδ + 2αTλ(∂vΦ̃(v))

)
∂uC

]
+ (3.1)

+ ∂v

[(
D0θ0Hδ + 2αLλ(∂vΦ̃(v))

)
∂vC + δ(∂vΦ̃(v))C

]}
,

(ii) for h ≤ H ,

∂tC =
4λ2

δ3θ0h(v)

{
∂u

[(
D0θ0h(v)δ + 2αTλ(∂vΦ̃(v))

)
∂uC

]
+ (3.2)

+ ∂v

[(
D0θ0h(v)δ + 2αLλ(∂vΦ̃(v))

)
∂vC + δ(∂vΦ̃(v))C

]}
,
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where λ = cosh v − cosu and ∂vΦ̃(v) = A.

We write (3.1), (3.2) in the form

∂tC −Kλ2∂vC = g {∂u(a(u, v)∂uC) + ∂v(b(u, v)∂vC)} , (3.3)

and consider the boundary conditions

C = C0(t) on Γ1; ∂uC = 0 on Γ2 ∪ Γ4; ∂vC = 0 on Γ3, (3.4)

where Γ1 := (0, π) × {v = v(2)}, Γ2 := {0} × (v(1), v(2)), Γ3 := (0, π) × {v(1)} and
Γ4 := {π} × ((v(1), v(2)), together with the homogeneous initial condition

C((u, v), 0) = 0. (3.5)

The function C0(t) is either a constant (C0(t) = C0) or a pulse shape, or piecewise
constant.

To solve the convection diffusion problem we use timestepping and operator split-
ting in which, along any small time interval, the problem is splitted into 2 parts: the

transport problem and the diffusion problem. More in details, let τ = T/n be a time
step and Ci ≈ C((u, v), ti) for i = 1, . . . , n. Given Ci−1 the relation

Ci = Di(τ)T i(τ)Ci−1, τ = ti − ti−1,

determines Ci. The transport T i(τ) corresponds to the solution φT of the transport
equation

∂tφ−Kλ2∂vφ = 0, (3.6)

with the inflow condition φT ((u, v2), t) = C0(t) and the initial condition

φT ((u, v), ti−1) = Ci−1.

The diffusion Di(τ) is obtained by solving the diffusion equation

∂tφ = g {∂u(a(u, v)∂uφ) + ∂v(b(u, v)∂vφ)} , (3.7)

with the boundary conditions (3.4) and the initial condition φ((u, v), ti−1) = C
1/2
i .

Then we set

C
1/2
i := T i(τ)Ci−1 ≡ φT ((u, v), ti).

and

Ci = Di(τ)C
1/2
i = Di(τ)T i(τ)Ci−1 ≡ φ((u, v), ti).

The solution of the transport problem (3.6) will be based on a piecewise constant
initial profile Ci−1, i.e., solution of the multiple Riemann problem, which we can
obtain precisely, in analytical form. The solution of (3.7) will be realized by the

finite difference method, which in the discretization of our domain Ω̃ (see §4 below)
coincides with the FVM (finite volume method). The result will be again a piecewise
constant function. Hence we can proceed analogously in the next time step.
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4. Numerical approximation of equation (3.3). The space discretization is
as follows. Let {ui}

N
i=0, {vj}

M
j=0 be nodal points, not necessarely equidistant, in u and

v respectively. We have v0 = v(2), vM = v(1), so v0 > vM , and 0 < u0 < uN < π,
see Fig. 3.1. We define ∆u+ = ui+1 − ui, ∆u− = ui − ui−1, ui+1/2 = ui + ∆u+/2,
ui−1/2 = ui − ∆u−/2, ∆u = ui+1/2 − ui−1/2. Analogously for v, where e.g. ∆v+ =

vj−1 − vj . In this way we have ui-strips defined by (ui−1/2, ui+1/2) × (v(1), v(2)), and
in these strips elements defined by (ui−1/2, ui+1/2)× (vj+1/2, vj−1/2) in which we have

the node (ui, vj). For the edges of Ω̃ we set u−1/2 ≡ 0, uN+1/2 ≡ π, v−1/2 ≡ v0 and
vM+1/2 ≡ vM .

4.1. Solution of the transport problem. We shall solve (3.6) in the strip
(ui0−1/2, ui0+1/2) × (v(1), v(2)) with grid points ve

0 ≡ v(2), ve
1 ≡ v3/2, v

e
2 ≡ v5/2, . . . ,

ve
M−1 ≡ vM−1/2, v

e
M ≡ v(1). Let the initial profile be a piecewise constant function

φ0(v) with shocks in the grid points and denote φ0(v) = U j for v ∈ (ve
j , v

e
j−1).

Transform (3.6) using the new variable y = y(v) where

y = F (v) =

∫ v

v(1)

dv

Kλ2
, λ2 = (cosh(v) − pi0)

2, pi0 = cosui0 .

Then φ(y, t) = φ(v, t) satisfies

∂tφ− ∂yφ = 0, φ(y, 0) = φ0(v).

Since λ is positive, the transformation is one to one. The solution can be written in
the form

φ(y, t) = φ(y + t, 0), or φ(y, 0) = φ(y − t, t),

and, consequently, using the inverse F−1 : y 7→ v, we obtain φ(v, t) from φ0(v).
Notice that we need not make the inverse in all points y, since it follows that φ(y, t)
is piecewise constant with the values {Uj}

N
j=1. It is sufficient to compute first,

yk =

∫ ve
k

v(1)

dx

Kλ2
, for k = 0, . . . ,M,

then shift it over the timestep τ , and compute the inverse F−1(yk − τ) := δk for
k = 0, . . . ,M . The solution φ(v, τ) then attains the constant value U jk ∈ {Uj}

N
j=1 in

the interval (δk, δk−1). Recall that the direction of velocity is opposite to the direction
of v-axes.

The final output, which will be used as input of the diffusion part (see §4.2),
is obtained by projecting φ(v, τ) to piecewise constants on intervals (ve

j , v
e
j−1), j =

1, . . . ,M . This corresponds to take averages over (ve
j , v

e
j−1). For example, if δk ∈

(ve
j , v

e
j−1) and δk−1, δk+1 /∈ (ve

j , v
e
j−1), then we have

C
1/2
l (v) = U jk

ve
j−1 − δk

ve
j−1 − ve

j

+ U jk+1
δk − ve

j

ve
j−1 − ve

j

, for v ∈ (ve
j , v

e
j−1),

and, similarly in other cases. E.g., if ve
j−1 < δk−1 < ve

j−2 and ve
j+1 < δk < ve

j , then

C
1/2
l (v) = U jk for v ∈ (ve

j , v
e
j−1).

Then C
1/2
l = PC1/2 = PT (τ) is piecewise constant and we can switch to the

diffusion.
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Recall that in the confined setting (h2 > h1 ≥ H), we can express F (v) in an
analytical form F (v) = F (v; p) =

(
F (v; p) − F (v(1); p)

)
/K and

F (v, p) :=
2pz − 2

(1 − p2)(z2 − 2pz + 1)
+

2p

(1 − p2)3/2
arctan

z − p√
1 − p2

(4.1)

where z = ev, p = cosui0 (when we are in the strip ui0−1/2 < u < ui0+1/2). In
the unconfined setting, F (v) must be determined numerically. To determine δk =
F−1(yk − τ) for yk − τ ∈ (yj , yj−1) so that δk ∈ (ve

j , v
e
j−1), we use a Newton iteration.

Namely, we look for the zero point of ψ(v) ≡ F (v) − (yk − τ) starting from vj where
ψ(vj) = yj − yk + τ . Note that ψ(v) and the derivative ψ,(v) = 1

Kλ2 can be easily
computed for every v.

4.2. Solution of the diffusion part. We use as grid points {ui, vj}, i =
0, . . . , N ; j = 1, . . . ,M . The diffusion part of (3.3) is

∂tφ = g {∂u(a(u, v)∂uC) + ∂v(b(u, v)∂vC)} , (4.2)

with boundary conditions (3.4).
We integrate (4.2) over (tk−1, tk) and Vij ≡ (ui−1/2, ui+1/2) × (vj+1/2, vj−1/2),

and assume that gij = g(ui, vj) is the prevailing value over Vij . Denote CE ≡ CE
i,j =

Ci+1,j , C
W ≡ CW

i,j = Ci−1,j and similarly CN , CS . We denote further aE = aE
ij =

a(ui+1/2, vj), a
W = aW

ij = a(ui−1/2, vj) and similarly bN , bS . Setting ω = ωij =
|Vij |
gij

,

gives the following linear algebraic system

[
ω +

(
aE ∆v

∆u+
+ aW ∆v

∆u−
+ bN

∆u

∆v+
+ bS

∆u

∆v−

)
τ

]
Ci,j = (4.3)

[
τ

∆v

∆u−
aW

]
Ci−1,j +

[
τ

∆v

∆u+
aE

]
Ci+1,j

+

[
τ

∆u

∆v+
bN

]
Ci,j+1 +

[
τ

∆u

∆v−
bS

]
Ci,j−1 + ωCk−1

i,j .

Taking into account the boundary conditions (3.4) we have to put aW ≡ 0 for the
points {u0, vj} and aE ≡ 0 for the points {uN , vj}, j = 1, . . . , N . Moreover for
{ui, vM}, i = 0, . . . , N we take bS ≡ 0 in (4.3).

The matrix corresponding to (4.3) is diagonal dominant and positive definite. For
the solution we use a modified generalized conjugate residual algorithm method.

It is well known that the transversal dispersivity coefficient is one order smaller
than the longitudinal (see [B]). As a consequence, we can put αT = 0 in (3.1), (3.2).
If also D0 = 0, the diffusion is reduced to only the v-direction (a(u, v) = 0). Then
a simple TDMA (tridiagonal matrix algorithm, see [P]) can be used to solve in each
strip one dimensional diffusion. The convergence of the used approximation is based
on convergence results for operator splitting approximation, see [C-M], [K-L], etc.

5. Numerical experiments. We compare our results with those obtained by
C.Welly and L.W. Gelhar in [W-G]. The mentioned authors used a simplified mathe-
matical model which is based on the analytical expressions for streamlines and equipo-
tential curves for point sources (injection and extraction). Their model violates the
Dupuit-Forchheimer assumptions in the neighbourhood of point sources. On the
other hand they obtained a semi-analytical solution , which avoids numerical disper-
sion. Our numerical dispersion arises when we project the solution after transport,
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Fig. 5.1. BTC for the transport problem, horizontal axis: time in days, vertical axis: relative
concentration C/C0. Upper part: timestep = 0.05 day, grid 80 × 200. Lower part: timestep = 0.1
day, grid 80 × 400. To the left: the BTC for a step input. To the right: the BTC for the uN strip,
corresponding to the line connecting the two wells (x-axis).

to piecewise constant function with respect to the used discretization. As a remedy,
one could change the mesh after each transport in time interval (tk−1, tk), k = 1, . . .,
but this would be numerically costly.

Our approximation keeps local and global mass balance. If we neglect D0, αL,
αT (i.e. diffusion), the response of contaminant injection at t = 0 is expected exactly
at time Tr

y0 − Tr = yN , i.e. Tr =

∫ v(2)

v(1)

dv

Kλ2
, (5.1)

for u = π, or p = −1, which corresponds to the line connecting the centers of the
wells. This time of respons should correspond to the beginning of a withdrawal curve
corresponding to the pulse type injection of contaminant. This characteristic also can
be used to measure the quality of the numerical solution.

Furthermore, we compare the shape of the BTC with constant inflow condition,
and also with pulse type inflow, with the one obtained in [W-G].

5.1. Experiment 1. We investigate the convergence and the numerical dis-
persion of the method. Consider the following data: both wells have a radius of
r1 = r2 = 15cm, and their centers are placed 10m (d = 5m) from each other. The
height of the aquifer is H = 10m, and the prescribed head value is h1 = 10m at the
extraction well, h2 = 15m at the injection well (confined flow). The porosity of the
soil is θ0 = 0.2, the hydraulic conductivity k = 0.864m2/day. Since the numerical
dispersion arises from the projection after transport, we consider only the transport
problem, so αL = αT = 0. Moreover, for the grid we take an equidistant u partition
(∆u = π/(N + 1), u0 = π/(2(N + 1))), and a non-equidistant v partition deduced
from an equidistant x partition along the x-axis between the two wells.

As the BTC corresponds with the responds over all flow-lines, we also depict the
BTC of the uN strip, the shortest path between the wells, which should be equal to
the input concentration delayed by Tr. In Fig. 5.1 the BTC for a step input starting
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Fig. 5.2. Scaled BTC with pulse input for αL/L = 0.2, 0.1, 0.05, 0.02, 0.01, 0.005 and 0.002.
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Fig. 5.3. Scaled BTC with 0.1 days pulse input, for αL/L = 0.2, 0.1, 0.05, 0.02, 0.01, 0.005
and 0.002.

at time t = 0 is given for two different time-space steps. In the upper part we have
τ = 0.05 days with M = 200 for the v partition, and in the lower part τ = 0.1
days with M = 400. The numerical dispersion is clearly under control. Indeed, the
theoretical responds is Tr = 6.466 days (see (5.1)), and in the bottom right figure we
see breakthrough starting after 6.15 days, with C0/2 after 6.36 days, and maximimum
C0 value after 6.60 days.

5.2. Experiment 2. To compare with [W-G], we use the same data as in the
first experiment §5.1, but for different values of the longitudinal dispersivity over
length, αL/L, for this determines the shape of the BTC. Results are obtained in the
80 × 400 grid with τ = 0.1 day. In Fig. 5.2, we give the BTC for a step input of the
tracer. In Fig. 5.3 for a pulse input of tracer C0 during 0.1 days. The figures have
been scaled to make comparison to [W-G] possible. For this scaling the maximum of
the BTC for αL/L = 0.002 with pulse input has been used, because this curve is the
closest to the pure advection case of the previous experiment. This maximum occured
after 6.775 days.

A careful analysis of the figures shows that for low values of αL/L (≤ 0.02), our
scheme produces BTC’s like those in [W-G].
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[C-K] D. Constales, J. Kaĉur, Parameter identification by means of dual-well tests, submitted.
[C-M] M.G. Crandall, A. Majda, The method of fractional steps for conservation laws, Numer.

Math., 34:285-314, 1980.
[G-C] L.W. Gelhar, M.A. Collins, General analysis of longitudinal dispersion in nonuniform flow,

Water Resour. Res., 7:1511-1521, 1971.
[G-B] D.B. Grove, W.A. Beetem, Porosity and dispersion constant calculations for a fractured car-

bonate aquifer using the two-well tracer method, Water Resour. Res., 17:128-134, 1971.
[H] H.M. Haitjema, Analytic Element Modeling of Groundwater Flow, Academic Press, San Diego,

1995.
[K-L] K.H. Karlsen, K.-A. Lie, An unconditionally stable splitting for a class of nonlinear parabolic

equations, IMA J. Numer. Anal., 19(4):609-635, 1999.
[P] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington (D.C.), 1980.

IMA J. Numer. Anal., 19(4):609-635, 1999.
[W-G] C. Welly, L.W. Gelhar, Evaluation of longitudinal dispersivity from nonuniform flow tracer

tests, Journal of Hydrology, 153:71-102, 1971.

Acnowledgement. The work was funded by the project BOF/GOA 120515 98
of Ghent University. The second autor was also supported by MSM 260 100001 and
GACR 201/00/0557.


