
Proceedings of ALGORITMY 2002
Conference on Scientific Computing, pp. 162–170

NUMERICAL SOLUTION OF DEGENERATE PARABOLIC

EQUATIONS OF HAMILTON-JACOBI TYPE WITHIN THE

CONTEXT OF COMPUTER IMAGE PROCESSING

VOJTĚCH MINÁRIK AND MICHAL BENEŠ∗

Abstract. The article briefly summarizes numerical solution of two parabolic equations used in
the context of computer image processing. The presented nonlinear initial-boundary value problems
serve in noise removal and pattern recovery. Their numerical solution is based on spatial discretiza-
tion by finite differences, and time discretization is given by the 4th order Runge-Kutta scheme.
The computational results demonstrate some properties of the equations (in the context of image
processing) and determine situations where the equations can be used.
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1. Introduction. This paper summarizes results of numerical solution of de-
generate parabolic equations of the level set type. Such equations are used for some
operations in the computer image processing.

As follows from previous results in this domain (see [12], [1], [2], [9], [10]) the
equations of level set type have been successfully used in various tasks of the im-
age processing. In agreement with the above mentioned results, we investigate the
following problem:

∂u

∂t
= g(|∇u|)

(

∇ ·
∇u

|∇u|
+ F (u, x, t)

)

in Ω × (0, T ),(1.1)

u(x, 0) = u0(x) x ∈ Ω,

u(x, t) = uΩ(x) x ∈ ∂Ω, 0 < t < T,

where Ω ⊂ R
2 is a bounded domain (usually rectangular), u is greylevel intensity

function (with values in interval [0, 255]), u0 is initial condition, uΩ boundary condi-
tion. All u, u0 and uΩ are functions of space variable x ∈ Ω, u depends on time t.
Time represents a scale according to the sense given by axioms of image processing
(see [1]). The term F introduces some external force, if this is reasonable. The use of
(homogeneous) Neumann boundary conditions is possible, especially in the case when
F ≡ 0 and conservation of

∫

Ω
udx is required.

The function g is used to modify and to control diffusion applied in the noise

removal task. We consider the following forms of g:

g1(s) =
1

1 + s2
(1.2)

g2(s) = 1 −
1

1 + s2
(1.3)

The other image processing task we consider is morphing, or more precisely a
transformation of initial image into the final one by means of a partial differential
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equation. The equation we use is derived from (1.1) according to our experience in
computation. In particular, the equation (1.1) is applied to the difference between
the solution and the final image (g(s) = s). Since the final image is time independent,
we get the initial-boundary value problem

∂u

∂t
= |Gσ ∗ (∇u −∇w)| ∇ ·

∇u −∇w

|∇u −∇w|
in Ω × (0, T ),(1.4)

u(x, 0) = u0(x) x ∈ Ω,

u(x, t) = uΩ(x) x ∈ ∂Ω, 0 < t < T,

where u0 is the initial image, w stands for the final image, and ∗ denotes convolution
with the Gaussian kernel Gσ in the form

Gσ(x) =
1

4πσ
exp

(−|x|2

4σ

)

, x = [x1, x2] ∈ R
2, |x|2 = x2

1 + x2
2.(1.5)

The use of a convolution with Gσ is optional and can be switched off in the
computation, although its presence has some positive influence on numerical solution.
It is not only a better convergence of solution (see also [10]), we also observe that
the morphing between initial and final images is smoother and there are no so sharp
changes of intensity as they were in the case without convolution.

The equations (1.1), (1.4) require some regularization caused by the fact that
|∇u|, |∇u−∇w|, respectively can vanish (and this is common situation if u is locally
constant or u and w are locally the same up to a constant). This problem is treated by
the usual way proposed in [7]. We use a regularization, which adds ε to the gradient
norm in the denominator. This type of regularization has two main advantages, the
level sets problem can be converted into a problem of graph evolution by scaling, and
solutions of the regularized problem converge to the viscosity solution of the level set
problem as ε tends to zero. More details concerning this topic can be found in [6] and
references therein.

2. Numerical scheme. Numerical algorithm is based on the finite difference
method in space and Runge-Kutta method in time. The grid is regular and rectan-
gular, as implied by image processing. Usually, an image which is considered as the
initial condition for (1.1) or (1.4) is a matrix of colored pixels, and therefore it is
enough to use rectangular grids.

Finite differences are used to replace spatial derivatives in the equation. In par-
ticular, we consider a rectangular grid in 2D as a set ωh of inner nodes, and ωh with
additional boundary nodes

ωh = {[kh1, lh2] | k, l ∈ Z, 0 < k < s1, 0 < l < s2},

ωh = {[kh1, lh2] | k, l ∈ Z, 0 ≤ k ≤ s1, 0 ≤ l ≤ s2},

where h1, h2 denote grid sizes and s1, s2 number of mesh intervals in both directions.
Let us denote γh the grid boundary nodes

γh = ωh − ωh,(2.1)

grid values of a function u and its spatial differences are denoted as follows:
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xij = [x1
ij , x

2
ij ], uij = u(xij)(2.2)

ux1,ij =
uij − ui−1,j

h1

, ux1,ij =
ui+1,j − uij

h1

,(2.3)

ux2,ij =
uij − ui,j−1

h2

, ux2,ij =
ui,j+1 − uij

h2

,(2.4)

ux1x1,ij =
1

h2
1

(ui+1,j − 2uij + ui−1,j),(2.5)

and discrete backward and forward gradients are vectors in the form given below:

∇hu = [ux1
, ux2

], ∇hu = [ux1
, ux2

].(2.6)

Using the above declared notations, we can propose a difference scheme for the prob-
lem (1.1). With uh denoting the approximate solution uh : ωh × [0, T ] → R, we
have

duh

dt
= g(|∇huh|)

(

∇h ·
∇huh

√

|∇huh|2 + ε2

+ F (uh, x, t)
)

in ωh × (0, T ),(2.7)

uh(x, 0) = u0,h(x) x ∈ ωh,

uh(x, t) = uΩ,h(x) x ∈ γh, t ∈ (0, T ).

Pointwise transcription of the equation in (2.7) for the node xij ∈ ωh is the following:

(duh

dt

)

ij
= g

(

√

(uhij − uh,i−1,j

h1

)2
+
(uhij − uh,i,j−1

h2

)2

)

(2.8)

(

1

h1

(

uh,i+1,j−uhij

h1
√

(uh,i+1,j−uhij

h1

)2
+
(uh,i+1,j−uh,i+1,j−1

h2

)2
+ ε2

−

uhij−uh,i−1,j

h1
√

(uhij−uh,i−1,j

h1

)2
+
(uhij−uh,i,j−1

h2

)2
+ ε2

)

+
1

h2

(

uh,i,j+1−uhij

h2
√

(uh,i,j+1−uh,i−1,j+1

h1

)2
+
(uh,i,j+1−uhij

h2

)2
+ ε2

−

uhij−uh,i,j−1

h2
√

(uhij−uh,i−1,j

h1

)2
+
(uhij−uh,i,j−1

h2

)2
+ ε2

)

)

with initial and boundary conditions

uhij(0) = u0,h(xij) xij ∈ ωh,

uhij(t) = uΩ,h(xij) xij ∈ γh, t ∈ (0, T ).
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The difference scheme for the problem (1.4) has the following form:

duh

dt
= |Gσ ∗ ∇h(uh − wh)|∇h ·

∇h(uh − wh)
√

|∇h(uh − wh)|2 + ε2

in ωh × (0, T ),(2.9)

uh(x, 0) = u0,h(x) x ∈ ωh,

uh(x, t) = uΩ,h(x) x ∈ γh, t ∈ (0, T ).

and can be rewritten pointwise:

(duh

dt

)

ij
= G(uh, wh)ij(2.10)

(

1

h1

(

uh,i+1,j−wh,i+1,j−uhij+whij

h1
√

(uh,i+1,j−wh,i+1,j−uhij+whij

h1

)2
+
(uh,i+1,j−wh,i+1,j−uh,i+1,j−1+wh,i+1,j−1

h2

)2
+ε2

−

uhij−whij−uh,i−1,j+wh,i−1,j

h1
√

(uhij−whij−uh,i−1,j+wh,i−1,j

h1

)2
+
(uhij−whij−uh,i,j−1+wh,i,j−1

h2

)2
+ ε2

)

+
1

h2

(

uh,i,j+1−wh,i,j+1−uhij+whij

h2
√

(uh,i,j+1−wh,i,j+1−uh,i−1,j+1+wh,i−1,j+1

h1

)2
+
(uh,i,j+1−wh,i,j+1−uhij+whij

h2

)2
+ε2

−

uhij−whij−uh,i,j−1+wh,i,j−1

h2
√

(uhij−whij−uh,i−1,j+wh,i−1,j

h1

)2
+
(uhij−whij−uh,i,j−1+wh,i,j−1

h2

)2
+ ε2

)

)

with initial and boundary conditions

uhij(0) = u0,h(xij) xij ∈ ωh,

uhij(t) = uΩ,h(xij) xij ∈ γh, t ∈ (0, T ).

The form of the term G(uh, wh)ij depends on the fact whether we are using the
convolution with Gaussian kernel or not. In the case when no convolution is used

G(uh, wh)ij =

√

(uhij − whij − uh,i−1,j + wh,i−1,j

h1

)2

+
(uhij − whij − uh,i,j−1 + wh,i,j−1

h2

)2

.

Otherwise, a matrix representation of convolution is used, where Gσ is an odd size
matrix (2m1 + 1 by 2m2 + 1) with elements gij , −m1 ≤ i ≤ m1, −m2 ≤ j ≤ m2:

G(uh, wh)2ij =

( m1
∑

k=−m1

m2
∑

l=−m2

gk,l

uh,i+k,j+l − wh,i+k,j+l − uh,i+k−1,j+l + wh,i+k−1,j+l

h1

)2

+

( m1
∑

k=−m1

m2
∑

l=−m2

gk,l

uh,i+k,j+l − wh,i+k,j+l − uh,i+k,j+l−1 + wh,i+k,j+l−1

h2

)2

The investigation of mathematical properties of (2.8) and (2.10) is beyond the
scope of this article. We therefore demonstrate basic properties of the proposed
schemes by measuring convergence of the numerical solution when mesh sizes decrease.

For this purpose, we consider the following variant of the problem (1.1):

∂u

∂t
= g(|∇u|)∇ ·

∇u

|∇u|
in Ω × (0, T ),(2.11)
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u(x, 0) = 0 x ∈ Ω, |x − [128, 128]| < 107,

u(x, 0) = 255 x ∈ Ω, |x − [128, 128]| >= 107,

u(x, t) = 255 x ∈ ∂Ω, 0 < t < T,

Ω = {[x1, x2] ∈ R
2|0 ≤ x1 ≤ 255, 0 ≤ x2 ≤ 255},

g(s) =
1

1 + s2

We numerically solve this problem using a series of spatial grids. The original
very fine grid has 256x256 nodes and mesh sizes h1 = h2 = 0.01. The initial image u0

has also 256x256 pixels. The initial image is rediscretized for a set of coarser grids,
and on each grid the solution is computed. Then it is compared with the very fine
grid solution, and a difference between the solutions (coarser grid solution and very
fine grid solution) is measured by means of a consistent norm

‖v‖l2 =
1

√

|Ω|

(

s1−1
∑

i=0

s2−1
∑

j=0

vi,jh1h2

)
1
2

(2.12)

computed on the finest grid. The evaluation of the norm requires a transformation of
a coarser grid solution to the finest grid which is done by linear interpolation.

Coarse grids have the following sizes: 64x64, 75x75, 100x100, 160x120, 128x128
and 200x200. A constant time step τ = 10−5 is used for the test. The maximal
difference of solutions (on the coarse and very fine grids) over a set of time points
is presented in the table 2.1. The differences in the table indicate the convergence
property of the numerical scheme as we refine the grid.

# Grid h1 h2 max. solution difference
1 64x64 0.04 0.04 0.4314
2 75x75 0.03413 0.03413 0.3447
3 100x100 0.0256 0.0256 0.2856
4 160x120 0.016 0.02133 0.2437
5 128x128 0.02 0.02 0.2213
6 200x200 0.0128 0.0128 0.2025

Table 2.1

Maximal difference of coarse grid solution from finest grid solution of the problem (2.11). The
time step in Runge-Kutta is τ = 10−5 and the difference is computed according to (2.12).

3. Qualitative results. We briefly discuss properties of presented algorithms
with respect to the use in image processing. In case of the problem (1.1), they are
influenced by the choice of the function g. We have tested more types of g like the
identity or exponential, but we will discuss only (1.2) and (1.3). The use of the
coefficient g1 (see [2]) allows to achieve the best results from all coefficients tested
with respect to noise removal and shape preserving. We obtain interesting results if
g2 is used (see fig. 3.1). Usual requirements on function g are non-negativity and zero
limit at infinity:

g(s) ≥ 0,(3.1)

lim
s→+∞

g(s) = 0.(3.2)
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In fact, we can require g(s) to be zero for s large enough. These requirements come
from the idea, that the position of significant edges in the image can be identified
by large norms of intensity function gradient. Therefore, the image should not be
changed at places with significant edges. We would like to have ∂u

∂t
≈ 0 in such

places.

Obviously, the function g2 does not satisfy properties stated above. The limit
at infinity is one. Figure 3.1 indicates that such setting can be useful in a pre-
processing for the edge detection. The initial image in Figure 3.1(a) processed by an
edge detection filter (white color image with black color instead of edges, see [11])
gives Figure 3.1(b) where there are too many details in the animal fur and grass. By
means of this operation, we either get edges almost everywhere, or we miss some ’less’
significant.1 As a consequence, the animal is not detected well. If the initial image
in Figure 3.1(a) is first processed by (2.7) with F = 0 and g = g2 to obtain Figure
3.1(c) or Figure 3.1(e) respectively, a subsequent use of the edge detection filter is
more successful (see Figures 3.1(d) and 3.1(f), respectively).

We may try to explain the influence of g2. There is a correspondence between the
presence of an edge in the image and a size of gradient norm. Image details in the
animal fur have large gradient norms too. A diffusion process like (2.7) allowing for
changes of the diffusion coefficient with respect to the size of gradient usually let the
edges vanish. However, it seems that the fur with the variable intensities is equalized
faster than the edges can vanish.

The scheme (2.10) has been used for a morphing operation between an initial
image (see Figure 3.2(b)) and a target image (see Figure 3.2(a)). During this process
scaled by the variable t, we observe a smooth conversion between the two images
accompanied by a flux of intensity in the direction of the target image.
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[3] M. Beneš, Mathematical and computational aspects of solidification of pure substances, Acta
Math. Univ. Comenianae, Vol. LXX, 1 (2001), pp. 123–151
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(a) Initial image (b) Edges in initial image

(c) Evolution time 0.20 (d) Edges in evolution 0.20

(e) Evolution time 0.31 (f) Edges in evolution 0.31

Fig. 3.1. Enhancing edge detection. Performing a suitable edge detection in initial image 3.1(a)
is a hard task. Either we get edges almost everywhere, or we miss some less significant. Evolving
such an image by anisotropic diffusion equation with g2 can help to solve this problem. Solutions in
times 0.00, 0.20, 0.31 on the left-hand side, and appropriate edge detection on the right-hand side
are shown. For the edge detection, the Prewitt filter (MatLab Image Processing Toolbox) was used.
The same filter threshold value was used for all images.
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(a) Destination image (b) Initial image (c) t=0.0014

(d) t=0.0040 (e) t=0.0066 (f) t=0.0092

(g) t=0.0128 (h) t=0.0154 (i) t=0.0180

(j) t=0.0206 (k) t=0.0232 (l) t=0.0284

Fig. 3.2. Image morphing. Leaf 3.2(b) is used as the initial condition u0, destination image
3.2(a) as the secondary input image w. Numerical solution in times 0.0014, 0.0040, 0.0066, 0.0092,
0.0128, 0.0154, 0.0180, 0.0206, 0.0232 and 0.0284 is shown. Smooth transfer of color intensity (see
dark area in bottom left corner of image) occurs as the time increases.



170 V. MINÁRIK, M. BENEŠ
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