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APPLICATION OF FEM IN MODELLING OF THE RESONANCE

CHARACTERISTICS OF PIEZOELECTRIC RESONATORS ∗

JIŘÍ MARYŠKA, PETR RÁLEK AND JOSEF NOVÁK †

Abstract. The paper describes an application of the finite element method in modelling of the
resonance characteristics of piezoelectric resonators. It contains derivation of the weak formulation
of the problem, based on the physical description of piezoelectric structures. Solving of the problem
leads to the set of linear equations with large and sparse matrices. The matrices define the generalized
eigenvalue problem, from which we can obtain the frequency spectrum of the resonator. The model
is tested on the problem of the longitudinally vibrating quartz resonator XY t−ϕ -cut (for definition
see [2]), our results are compared with measured frequencies.
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1. Introduction. A piezoelectric resonator is a thin stick or wafer made of piezo-
electric material. There are two or more electrodes on its surface. The voltage on the
electrodes implies the deformation of the resonator. The parameters of piezoelectric
resonators are closely related to properties of materials from which they are made.
The most important of them are the elastic, dielectric and piezoelectric material char-
acteristics. When we want to study the behavior of the piezoelectric resonator, the
most important parameter is his resonance frequency. It depends on the origin and
form of the cut, the shape and size of the electrodes, selected vibration mode, the
resonator mounting and housing. The experimental testing of piezoelectric resonators
is very expensive and means plenty of specimens. Thus the motivation for the using
of mathematical model is to cheapen this testing. The analytic solution is able only
for very simple structures. For numerical modelling, we use the finite element method
(FEM). It is necessary to calibrate and verify all types of models on the simple real
system. In article, described FEM model was calibrated and verified on the longi-
tudinally vibrating quartz resonator XY t−ϕ -cut. This resonator has got a simple
geometry, thus the resonance frequencies are very well known. In this case, we can
compare the model with the real resonator.

2. Physical description. There are two differential equations governing the
behavior of a piezoelectric continuum - Newton’s laws of motion (2.1) and the qua-
sistatic approximation Maxwell’s equation (2.2)(see [3] - this approximation is valid,
because acoustic waves are typically five orders of magnitude slower than electromag-
netic waves.). Let us denote the volume of the resonator as the volume Ω and its
boundary as Γ. The time range, in which we solve the problem, is (0, T).

%
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∂t2
=

∂Tij

∂xj

i = 1, 2, 3, x ∈ Ω, t ∈ (0, T)(2.1)
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∇ ·D =
∂Dj

∂xj

= 0,(2.2)

T is the stress tensor, D is the vector of electric flux density, % is the density and u

is the displacement vector.
The above equations are coupled by the piezoelectric equations of state:

Tij = cijkl · Skl + dijk · Ek i, j = 1, 2, 3,(2.3)

Dk = dkij · Sij + εkj · Ej k = 1, 2, 3,(2.4)

where S is the strain tensor, E is the vector of electric field, c, d and ε are the
stiffness, piezoelectric and permitivity tensors of quartz (these tensors are typicall for
each material). We assume the symmetry of the tensors. In generall, they are not
positive definite.

Sij =
1

2

[

∂ui

∂xj

+
∂uj

∂xi

]

i, j = 1, 2, 3,

Ek =
∂ϕ

∂xk

k = 1, 2, 3,

where ϕ is the electric potential. If the resonator is loaded by electric potential in the
form

ϕ = ϕ0(x, y, z) cosωt,

we can expect the behavior of displacement in the form

u = u0(x, y, z) cosωt.

For convenience, we will write the amplitudes of vibration, u0 and ϕ0, as u and ϕ. If
we now substitute (2.3), (2.4) into (2.1), (2.2), we obtain

−ω2% · ui =
∂

∂xj

(

cijkl ·
1

2

[

∂uk

∂xl

+
∂ul

∂xk

]

+dijk · ∂ϕ

∂xk

)

i = 1, 2, 3,(2.5)

∂

∂xk

(

dkij ·
1

2

[

∂ui

∂xj

+
∂uj

∂xi

]

+εkj ·
∂ϕ

∂xj

)

= 0.(2.6)

Let the boundary of Ω consist of two disjoint subsets Γ = Γ1

⋃

Γ2. There are
stated the boundary and initial condition :

ui = uiD i = 1, 2, 3 on Γ1,(2.7)

Tijnj = tiN i = 1, 2, 3 on Γ2,

ϕ = ϕD on Γ1,(2.8)

Dknk = DN on Γ2.

The conditions marked with subscript D are the Dirichlet boundary conditions, the
subscript N marks the Neumann boundary condition (nj is the j-th component of
normal vector at the boundary Γ).
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3. Weak formulation. If we want to use the FEM method to compute the the
numerical solution of the problem (2.5) - (2.8), we must establish the weak formulation
of the problem. We look for a weak solution, which has to be a member of the Sobolev
space

W
(1)
2 (Ω) = {ϕ ∈ L2(Ω)|∇ϕ ∈ [L2(Ω)]3 in the weak sence}.

Let’s define

V (Ω) = {v|v ∈ W
(1)
2 (Ω), v|Γ1

= 0 in the sence of traces}.

At first, for i=1,2,3 we multiply the equations (2.5) by test functions wi ∈ V , sum
them up and integrate the sum over Ω. After using the Green formula, boundary
conditions and symmetry of the material tensors we obtain the integral equality

(

cijkl · Skl, Rij

)

Ω

−
(

%ω2ui, wi

)

Ω

+

(

dijk · ∂ϕ

∂xj

, Rij

)

Ω

=

〈

tiN , wi

〉

Γ2

,(3.1)

where

Rij =
1

2

[

∂wi

∂xj

+
∂wj

∂xi

]

.

Further, we apply the same procedure on the equation (2.6), with test function φ ∈ V .
We obtain the integral equality

(

djikSik ,
∂φ

∂xj

)

Ω

+

(

εji

∂ϕ

∂xi

,
∂φ

∂xj

)

Ω

=

〈

DN , φ

〉

Γ2

.(3.2)

Let uD ∈ [W
(1)
2 (Ω)]3 and ϕD ∈ W

(1)
2 (Ω) satisfy Dirichlet boundary conditions (in

the weak sence). Further, let u = (u1, u2, u3) ∈ [V (Ω)]3 and ϕ ∈ V (Ω) be functions,
for which equalities (3.1) and (3.2) are observed for all choices of testing functions
w = (w1, w2, w3) ∈ [V (Ω)]3, φ ∈ V (Ω). Than we define the weak solution of the
problem (2.5) - (2.8) as

uD + u, ϕD + ϕ.

x

z

y

Fig. 4.1. Division of a cubic crystal into layers and prizmatic elements
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Fig. 4.2. Division of a prizmatic element into four tetrahedrons 0125, 0153 a 1534

4. Discretized problem. For computing an aproximation of the weak solution
of our problem, we divide the area Ω (which is the volume of the resonator) in two
steps to the finite set E

h of disjoint tetrahedrons covering the volume:

Ω ∼ Ωh =
⋃

e∈Eh

e,
⋃

j∈J

ej = Ω.

For each element from the division, we define the function space and its basis

V h(e) = {φh|supp(φh) ⊂ e, φh ∈ W 1
2 (e), φh|∂e = 0} Φ(e) = {φe

i (x, y, z)|i = 1, 2, 3, 4},

which satisfy

φe
i (s

j) = δij , i, j = 1, 2, 3, 4.

For tethrahedron the basis is made of four linear multinomials. The union

Φh =
⋃

e∈Eh

Φh(e) forms the basis of V h(Ω) = {φ ∈ V (Ω), φ|e

is linear multinomial ∀e ∈ E
h}. We look for aproximation of a weak solution from the

space V h(Ω):

uh
i (x) =

∑

φh
j
∈Φh

u
j
iφ

h
j (x), u

j
i ∈ R, x ∈ Ω, i = 1, 2, 3,(4.1)

ϕh(x) =
∑

φh
j
∈Φh

ϕjφh
j (x), ϕj ∈ R, x ∈ Ω.

Coefficients in the linear combination are the values of the functions u and ϕ in the
nodes of division. Let the basis functions be numbered (φh

1 , ..., φh
r ). Substituting (4.1)

into (3.1) and (3.2), the integral equality has to be satisfied for all base function φh
s ,

s ∈ r̂

(

cijkl · Sh
kl, R

h
ij

)

Ω

−
(

%ω2uh
i , φh

s

)

Ω

+

(

dijk · ∂ϕh
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)

Ω

=

〈

tiN , φh
s

〉

Γ2

,(4.2)
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)

Ω
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(
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∂ϕh
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,
∂φh

s

∂xj

)

Ω

=

〈

DN , φh
s

〉

Γ2

.(4.3)

To fulfil the above equations, the system of linear algebraic equations has to be
fulfiled. The system has a block shape
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where for p, q ∈ r̂

Kpq =

∫

Ωh

[Bq]TCBpdΩ, Kpq ∈ R3,3,

Bp =
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,

(Mpq)ii =

∫

Ωh

φh
pφh

q dΩ, i = 1, 2, 3, Mpq ∈ R3,3,

Ppq =

∫

Ωh

[Bq ]TD(∇φh
p )dΩ, Ppq ∈ R3,1,

Epq =

∫

Ωh

(∇φh
q )TΣ(∇φh

p )dΩ, Epq ∈ R,

R1
p = (〈t1N , φh

p〉Γ2
, 〈t2N , φh

p 〉Γ2
, 〈t3N , φh

p 〉Γ2
)T, R2

p = 〈DN , φh
p〉Γ2

.

4.1. Observing of the resonance frequencies. Let us write the system (4.4)
as

(

K − ω2M PT

P E

)(

U

Φ

)

=

(

R1

R2

)

.(4.5)

The Dirichlet boundary conditions can be introduced to the system by replacing
the appropriate part of matrix with identity matrix and zeros and adding the boundary
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values to the vector of right side. E.g., let be prescribed the boundary condition for
displacement in the j-th node of the mesh. Then we change submatrices in the j-th
row and column of the matrix (other parts of the system are unchanged).
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For given parameter ω, if the matrix of the system is nonsingular, from the system
with right side we can compute values of displacement and electric potential in the
nodes of the mesh (it was the subject in first testing problems and shall not be
presented here). The case of singularity of the matrix corresponds to the resonance.
To compute the resonance frequencies involve to find out such parameters ω, for which
the matrix is singular (or nearly singular). Thus we have to solve the symmetric
generalized eigenvalue problem with deflated matrix of the system (we omit the parts
of the matrix, which belong to the Dirichlet boundary condition):

(

K PT

P E

) (

U

Φ

)

= λ

(

M 0
0 0

) (

U

Φ

)

.(4.7)

The solution of this problem is the eigenvalue λ ∈ R and the nontrivial eigenvector
(U, Φ)T, which fulfil (4.7). If we have any positive eigenvalue λ from the solution of
the problem (4.7), the

ω =
√

λ

is the required resonance frequency. The eigenvector (U, Φ)T contains the values
of displacement and electric potential at the nodes of discretization. The resonance
frequencies result from the character of the matrix, thus they are independent from
the right side in (4.5). We assume the influence of the right side to the shape of the
vibration, but it has not yet been studied.

5. Example problem. The designed FEM model was calibrated and verified
on the longitudinally vibrating narrow quartz XYt-j -cut rods (for j = 0o − 5o) with
parameters

length = (4.000±0.001)cm, thickn. = (0.001±0.0005)cm, width = (0.400±0.001)cm.

Both large sides of the resonator are covered by silver electrodes. Its equivalent
thickness is 6.10−4 cm. The resonator is pinned in the center of large sides.The
resonator is fixed in the center of its length, thus the problem is symmetric and
we can solve it for one half of the resonator. We establish appropriate boundary
conditions at the center of the resonator. The consequence of this simplification is,
that we compute only symmetric vibrations of the resonator.
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5.1. Boundary conditions. The values of the electric potential is established
at the electrodes: φ = φdef .

The boundary conditions for the displacement are established in the center of
the resonator. Resonator is fixed in the center of the large sides. Through these
points goes the nodal line of odd vibrations. On the nodal line we suppose zero
displacements: u = 0 at the nodal line of odd vibrations.

Zero displacements are also entered on the planes going through the nodal line of
odd vibrations. These planes are supposed in two modifications.

1. u = 0 the plane normal to the length of resonator

2. u = 0 the nodal plane of longitudinal vibrations

The definition of the second plane depends on the cut (see [2]) and the plane is
not exactly normal to the length of the resonator. This second condition represents
more accurate the physical reality.

5.2. Numerical realisation. The resonator was divided into prismatic ele-
ments (fig. 5.1) and then each of the prismatic element was divided into four tetra-
hedrons.

Fig. 5.1. The mesh - prismatic elements

The global matrix was compiled. Rows and columns, which belonged to the nodes
with prescribed Dirichlet boundary conditions, were removed. The deflated matrix
was an input for the computing of the resonance frequencies. The procedures for
discretization with flexible discretization parameter and compilation of the matrices
of the discretized problem has been implemented by us in the programming language
C++. For solving the generalized eigenvalue problem we have used the procedures
from LAPACK library. The LAPACK procedure input were two deflated matrices
from (4.7). The programe output is the vector containing spectrum of generalized
eigenvalue problem and the appropriate matrix, which columns are the standardized
eigenvectors (the description of the output is in the LAPACK manual, available on
the internet). The particular, eigenvector characterizes the type of vibration. The
computing has been done for several meshes with various refinement. In the graph
(fig. 5.2), there is shown the convergent character of the dependance of the resonance
frequency on increasing number of elements in the mesh (increasing size of the global
matrix).

Fig. 5.2. Frequency of the longitudinal vibration
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5.3. Some results. In next set of figures (5.3), there are shown some of first
kinds of vibration of the resonator.

1.116e-01

1.240e-02
2.481e-02
3.721e-02
4.962e-02
6.202e-02
7.443e-02
8.683e-02
9.924e-02

0.000e+00

1.240e-01
1.365e-01
1.489e-01
1.613e-01
1.737e-01

 8956Hz 
X

Y

Z

1.165e-01

1.295e-02
2.590e-02
3.885e-02
5.179e-02
6.474e-02
7.769e-02
9.064e-02
1.036e-01

0.000e+00

1.295e-01
1.424e-01
1.554e-01
1.683e-01
1.813e-01

 30006Hz 

X

Y
Z

1.078e-01

1.198e-02
2.396e-02
3.595e-02
4.793e-02
5.991e-02
7.189e-02
8.387e-02
9.586e-02

0.000e+00

1.198e-01
1.318e-01
1.438e-01
1.558e-01
1.677e-01

 43511Hz 

X Y

Z

8.703e-02

9.670e-03
1.934e-02
2.901e-02
3.868e-02
4.835e-02
5.802e-02
6.769e-02
7.736e-02

0.000e+00

9.670e-02
1.064e-01
1.160e-01
1.257e-01
1.354e-01

 69044Hz X

Y
Z

Fig. 5.3. Some of computed modes of vibration

Computed frequencies of longitudinall vibrations are compared with the measured
frequencies (publicated in [1]) in table 5.1.

Measuring [Hz] Model [Hz] difference [%] ϕ

67 846 68 539 1.02 0o

68 653 68 814 0.23 2o

70 205 69 491 1.02 5o

Table 5.1

Comparation with measured frequencies

6. Conclusion. The model computing the resonance frequencies of the piezo-
electric resonator has been built. The results of the described well model approximate
the measured results for tested simply shaped (rod or slide) resonators. So it seems
our model can have real application, e.g. in designing shape of the resonators with
required frequencies. Nowadays, the program modules for computing the resonance
chracteristics of planconvex and biconvex resonators and module for computing the
temperature dependence of resonance frequencies are in development.
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