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PARALLEL SVD COMPUTATION IN UPDATING PROBLEMS

OF LATENT SEMANTIC INDEXING ∗

GABRIEL OKŠA, MARTIN BEČKA AND MARIÁN VAJTERŠIC †

Abstract. In latent semantic indexing, the addition of documents (or the addition of terms)
to some already processed text collection leads to the updating of the best rank-k approximation
of the term-document matrix. The computationally most intensive task in this updating is the
computation of the singular value decomposition (SVD) of certain square matrix, which is upper or
lower triangular, and contains a diagonal block in its upper left corner. For the solution of this task,
the new dynamic ordering of subproblems is compared with the up-to-now preferred static cyclic one
in the parallel two-sided block-Jacobi SVD algorithm. The results of numerical experiments show
that, for a given accuracy, the dynamic ordering is much more efficient that the static cyclic one
with respect to the number of parallel iteration steps needed for the convergence of the two-sided
block-Jacobi SVD algorithm.
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1. Introduction. Latent semantic indexing (LSI) is a concept-based automatic
indexing method for overcoming the two fundamental problems which exist in the
traditional lexical-matching retrieval schemes: synonymy and polysemy [5]. With
respect to the synonymy, several different words can be used to express a concept and
the keywords in a user’s query may not match those in the relevant documents. On
the other hand, the polysemy means that the words can have multiple meanings and
the user’s words may match those in the irrelevant documents. LSI is an extension of
the vector space model for information retrieval [6, 5]. In the vector space model, the
collection of text documents is represented by a term-document matrix A = (aij) ∈
R

m×n, where aij is based on the number of times the term i appears in the document j,
m is the number of terms, and n is the number of documents in the collection. Hence,
a document becomes a column vector, and a user’s query can also be represented as a
vector of the same dimension. The similarity between a query vector and a document
vector is usually measured by the cosine of the angle between them, and for each
query a list of documents ranked in a decreasing order of similarity is returned to the
user.

LSI modifies this vector space model by modeling the term-document relation-
ship using a reduced-dimension representation (RDR) of term-document matrix A
computed by its singular value decomposition (SVD). Let

A = PΣQT , Σ = diag(σ1, σ2, . . . , σmin{m,n}) , σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n} ,

be the SVD of A. Then the RDR is given by the best rank-k approximations Ak =
PkΣkQT

k , k < min{m, n}, where Pk and Qk consist of the first k columns of P and
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Q, respectively, and Σk is the kth leading principal sub-matrix of Σ. Each of the k
reduced dimensions represents a so-called pseudo-concept [6], which may not have any
explicit semantic content but helps to discriminate documents [6, 7].

In rapidly changing environments such as the World Wide Web, the document col-
lection is frequently updated with new documents and terms constantly being added.
Hence, the task arises to efficiently update the old LSI-generated RDR after an addi-
tion of new documents and terms. In Section 2, the mathematical model of updating
is briefly presented, which is based on algorithms derived in [8]. It turns out that
the computationally most intensive task in the correct updating is the SVD compu-
tation of some upper or lower triangular matrix. In Section 3 we present the parallel
two-sided block-Jacobi SVD algorithm for solving this problem. In the numerical
experiments, the dynamic ordering of subproblems is compared with the cyclic one,
and the efficiency of the former is documented and discussed. Section 4 concludes the
paper.

2. Two updating problems in LSI.

2.1. Updating documents. Let us suppose that the RDR of order k was al-
ready computed and stored for some term-document matrix A, and the original matrix
was discarded (e.g. for the memory reasons), so that only Ak = PkΣkQT

k is available
in the factored form. Let D ∈ R

m×p be p new documents. The task is to compute
the best rank-k approximation of the column partitioned matrix

B ≡ (Ak , D) .

Using the factorization of Ak, the matrix B can be written as

B =
(

PkΣkQT
k , D

)

=
(

Pk, (Im − PkP T
k ) D

)

·

(

Σk P T
k D

0 Ip

)

·

(

QT
k 0

0 Ip

)

.

Note that Im−PkP T
k is the matrix representation of the orthogonal projection, which

maps the columns of matrix D into the subspace P⊥
k that is orthogonal to the column

range of matrix Pk. Let (Im − PkP T
k )D = P̂p R be the QR decomposition of the

matrix (Im − PkP T
k )D. Then

B = (Pk , P̂p) ·

(

Σk P T
k D

0 R

)

·

(

QT
k 0

0 Ip

)

. (2.1)

The crucial point in the above derivation is the observation that the p orthonormal
columns of matrix P̂p are mutually orthogonal to the k orthonormal columns of matrix

Pk because the columns of P̂p constitute the orthonormal basis of the subspace P⊥
k .

Note that two exterior matrices on the right hand side of Eq. (2.1) are orthogonal,
but the inner matrix is not diagonal. Hence, from the computational point of view,
the updating problem is reduced to the SVD of the inner matrix in Eq. (2.1).

Based on these facts, Zha and Simon [8] have derived a method for solving the
problem of updating documents. Their approach is summarized in Algorithm 1.

Notice that Step 4 in Algorithm 1 requires the SVD of structured matrix B̂, which
is upper triangular with the diagonal left upper block of order k× k. Simultaneously,
this step represents the most intensive computation in Algorithm 1.
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Algorithm 1 Algorithm for updating documents

1: Input: k, Pk ∈ R
m×k, Σk ∈ R

k×k, Qk ∈ R
n×k, D ∈ R

m×p.
2: Compute the projection: D̂ = (Im − Pk P T

k ) D.

3: Compute the QR decomposition: D̂ = P̂p R, where P̂p ∈ R
m×p, R ∈ R

p×p.
4: Compute the SVD of matrix

B̂ ≡

(

Σk P T
k D

0 R

)

∈ R
(k+p)×(k+p)

in the form:

B̂ = (Uk, U⊥
k ) · diag(Σ̂k, Σ̂p) · (Vk, V ⊥

k )T ,

where Uk, Vk ∈ R
(k+p)×k and Σ̂k ∈ R

k×k.
5: Output: The best rank-k approximation of B = (Ak, D) is given by:

Bk ≡
[

(Pk, P̂p) Uk

]

· Σ̂k ·

[(

Qk 0
0 Ip

)

Vk

]T

.

2.2. Updating terms. In this case, let T ∈ R
q×n be the q new term vectors

that should be added to the existing terms at the bottom of the old term-document
matrix. The task is to compute the best rank-k approximation of the row partitioned
matrix

C ≡

(

Ak

T

)

.

Using steps similar to those in the previous paragraph (see [8]), one gets the Algo-
rithm 2 for the correct updating of terms.

Similarly to the problem of updating documents, the computationally most in-
tensive step is the SVD of the lower triangular matrix Ĉ with the upper left diagonal
block. Since the upper and lower triangular matrices are related by the matrix trans-
position that affects the SVD only by interchanging the left and right singular vectors,
in the following we focus on the upper triangular matrix B̂ in Algorithm 1. The con-
clusions with respect to the efficiency of the SVD computation will be valid for both
updating problems.

3. Parallel SVD computation. In this section, the emphasis is on the parallel
computation of the SVD of matrix B̂ in Step 4 of Algorithm 1. We briefly intro-
duce the parallel two-sided block-Jacobi SVD algorithm with the dynamic ordering
of individual subproblems, which is described in more detail in [4].

Recall that B̂ is the upper triangular, square matrix of order v = k + p with the
diagonal upper left block of order k. In practice, the parameter k depends on the
text collection and covers the range from 100 to 300 (cf. [6, 5, 7, 8]). It is clear from
the output of Algorithm 1 that only k largest singular values and their left and right
singular vectors are needed for the construction of Bk so that some iterative method
for the partial SVD can be considered in this case. On the other hand, the Jacobi
SVD algorithm computes the complete SVD. However, when k � p (or k � q)—i.e.,
the number of added documents (or added terms) is small as compared to k—and
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Algorithm 2 Algorithm for updating terms

1: Input: k, Pk ∈ R
m×k, Σk ∈ R

k×k, Qk ∈ R
n×k, T ∈ R

q×n.
2: Compute the projection: T̂ = (In − Qk QT

k ) T T ∈ R
n×q .

3: Compute the QR decomposition: T̂ = Q̂q LT , where Q̂q ∈ R
n×q, L ∈ R

q×q .
4: Compute the SVD of matrix

Ĉ ≡

(

Σk 0
TQk L

)

∈ R
(k+q)×(k+q)

in the form:

Ĉ = (Uk, U⊥
k ) · diag(Σ̂k, Σ̂q) · (Vk , V ⊥

k )T ,

where Uk, Vk ∈ R
(k+q)×k and Σ̂k ∈ R

k×k .

5: Output: The best rank-k approximation of C =

(

Ak

T

)

is given by:

Ck ≡

[(

Pk 0
0 Iq

)

Uk

]

· Σ̂k ·
[

(Qk, Q̂q) Vk

]T

.

when the parallel computation is performed with a sufficient speedup, the usage of
the parallel two-sided block-Jacobi SVD algorithm can be justified in the updating
problems of LSI.

3.1. Two-sided block-Jacobi method with dynamic ordering. The two-
sided block-Jacobi method for computing the SVD operates on an l× l block partition
of B̂, where l is a chosen blocking factor. The kernel operation of the method is the
SVD of 2 × 2 block subproblems

Sij =

(

B̂ii B̂ij

B̂ji B̂jj

)

, (3.1)

where, for a given pair (i, j), i, j = 0, 1, . . . , l− 1, i 6= j, the orthogonal matrices Xij

and Yij are generated such that the product

XT
ijSijYij = Dij

is a block diagonal matrix of the form

Dij =

(

Jii 0
0 Jjj

)

.

In the cyclic method, the ordering of pairs (i, j) is prescribed according to some static
list. The solution of (3.1), for each pair (i, j), i, j = 0, 1, . . . , l − 1, i 6= j, constitutes
one sweep of the method. Hence, the number of the subproblems to be solved in one
sweep is L = l(l − 1)/2.

The termination criterion of the whole process is

F (B̂, l) =

√

√

√

√

l−1
∑

i,j=0, i6=j

‖B̂ij‖2
F < ε , (3.2)
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where ‖ · ‖F denotes the Frobenius norm, ε = prec · ‖B̂‖F is the required accuracy
(measured relatively to the Frobenius norm of the original matrix B̂), and prec is a
suitably chosen small constant.

A subproblem (3.1) is solved only if

F (Sij , l) =

√

‖B̂ij‖2
F + ‖B̂ji‖2

F ≥ δ , (3.3)

where δ = ε/L is a given subproblem accuracy.
The two-sided block-Jacobi SVD algorithm with some static cyclic ordering can

be efficiently parallelized as shown in [2, 3].
In [4], a new variant of the parallel two-sided block-Jacobi SVD algorithm was

designed, implemented and tested. Let the SVD be computed on w processors, and
let the blocking factor be l = 2w. In one parallel iteration step that represents w
serial iteration steps, one would like to decrease the norm of the off-diagonal matrix
blocks as much as possible. This task can be formulated in terms of graph theory as
the maximum-weight perfect matching problem.

Consider a weighted complete graph G = (V , E) = Kl, where the nodes are
numbered from 0 to l − 1, E = {(i, j) | i < j} and the edge (i, j) has the weight
zij = ‖B̂ij‖F + ‖B̂ji‖F . We can achieve the maximum-weight perfect matching of
this graph in time O(w3). When an approximate solution is good enough, a simple
greedy approach can be used. Let us sort the edges with respect to their weights
in nonincreasing order. Then let us scan this ordered sequence from left to right
and add an edge to the matching only if neither of its endpoints is an endpoint of
any previously selected edge. The complexity of this greedy algorithm is O(w2 log w)
due to the complexity of sorting. We refer to our paper [4] for the detailed discussion
regarding the complexity of the whole parallel two-sided block-Jacobi SVD algorithm.

The parallel algorithm for the processor me, me = 0, 1, . . . , w−1, can be written
in the form of Algorithm 3, where U:i denotes the ith v × (v/2w) block column of
matrix U (similarly for matrices B̂ and V ).

The procedure SVD(Sij) in the inner loop of Algorithm 3 computes the SVD of
subproblem (3.1). In the procedure AllGather, each processor sends its matrix Xij

to all other processors, so that each processor maintains an array (denoted by XX)
of w matrices. The procedure ReOrderingComp computes the optimal reordering
destinations of all block columns residing in a given processor (dest1 and dest2) and
their locations at new position (tag1 and tag2), based on the updated weight matrix
Z. The argument tag provides the matching between the corresponding send and
receive calls.

3.2. Numerical experiments. In this section, the numerical experiments on a
parallel supercomputer with a variable number of processors are described and their
results are discussed. We compare the performance of Jacobi algorithm using the
dynamic ordering with that using the up-to-now preferred cyclic ordering of subprob-
lems.

The above parallel algorithm was implemented in Fortran on an SGI—Cray Ori-
gin 2000 parallel computer using the Message Passing Interface (MPI) library. The
number of used processors covered the range w = 2, 5, 10 and 15. For the matrix
multiplications, the BLAS procedure zgemm was applied, and the LAPACK procedure
zgesvd [1] was used for the computation of the embedded SVD in the inner loop of Al-
gorithm 3. The constant prec = 10−10 was chosen for the computation of ε and δ (see
Eqns. (3.2) and (3.3)). All computations were made using the IEEE standard double
precision floating point arithmetic with the machine precision εM ≈ 1.11× 10−16.
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Algorithm 3 Parallel block-Jacobi SVD algorithm with dynamic ordering

U = Iv , V = Iv

(i, j) = (2 · me, 2 · me + 1)
while F (B̂, l) ≥ ε do

if F (Sij , l) ≥ δ then

% Computation of Xij and Yij by SVD of Sij

SVD(Sij) → Xij , Yij

% Update of block columns

(B̂:i, B̂:j) = (B̂:i, B̂:j) · Yij

(U:i, U:j) = (U:i, U:j) · Xij

(V:i, V:j) = (V:i, V:j) · Yij

else

Xij = Iv/w

end if

AllGather(Xij, i, j) → XX(t) = (Xrs, r, s), t = 0, 1, . . . , w − 1
for t = 0 to w − 1 do

% Update of block rows
(

B̂ri B̂rj

B̂si B̂sj

)

= XT
rs,t ·

(

B̂ri B̂rj

B̂si B̂sj

)

end for

update(Z)
ReOrderingComp(i, j, Z, me) → dest1, dest2, tag1, tag2
copy(B̂:i, U:i, V:i, i) → B̂:r, U:r, V:r, r
copy(B̂:j, U:j , V:j , j) → B̂:s, U:s, V:s, s

send(B̂:r, U:r, V:r, r, dest1, tag1)
send(B̂:s, U:s, V:s, s, dest2, tag2)
receive(B̂:i, U:i, V:i, i, 1)
receive(B̂:j, U:j , V:j , j, 2)

end while

In the experiments, the order of the square upper triangular matrix B̂ together
with the size of its upper left diagonal block Σk were fixed: v = k + p = 500 and
k = 150. The elements of B̂ were generated randomly in two steps using two positive
constants α and β. First, k values uniformly distributed in the interval [0, 1] were ob-
tained and multiplied by α; they constituted the diagonal of Σk. Next, the remaining
elements of matrix blocks P T

k D and R uniformly distributed in the interval [−1, 1]
were generated and multiplied by β. The adopted approach enabled us to modify
the ratio between the Frobenius norm of Σk and that of the rest of matrix B̂. This
is equivalent to the modeling of the relative weight that the new documents brought
to the document collection. In our experiments, the value of α = 100 was fixed and
β = 1, 2, 5, 10, 20 and 50.

The experimental results are presented in the following tables. For a given number
of processors w, the parallel computational time in seconds (first column) and the
corresponding number of parallel iteration steps (second column) are shown for all
values of parameter β mentioned above. In Table 3.1, the performance of the parallel
algorithm is documented using the sweep technique with the static cyclic odd-even
ordering (CO(0), see [2]). Table 3.2 contains the results of the new dynamic ordering
method. Let us discuss these results in more detail.
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Table 3.1

Results for the static cyclic ordering CO(0)

β / w 2 5 10 15
1 43.5 21 32.5 90 22.7 228 17.1 348
2 43.9 21 29.1 99 23.4 247 18.2 348
5 64.5 27 42.5 117 35.4 266 29.8 406
10 71.3 30 62.7 153 53.0 285 46.2 425
20 81.8 36 65.0 153 55.3 342 49.7 522
50 72.3 30 52.4 153 48.4 342 45.4 580

Table 3.2

Results for the greedy dynamic ordering

β / w 2 5 10 15
1 22.4 10 17.1 47 13.5 107 10.0 173
2 24.2 10 17.4 48 14.7 111 11.4 183
5 27.2 11 21.2 49 15.2 112 12.1 187
10 29.7 11 20.8 51 17.5 115 14.9 195
20 29.7 12 19.9 53 18.1 121 15.0 198
50 29.4 12 22.1 55 20.3 126 17.7 211

For both orderings, the number of parallel iteration steps increases with an in-
crease of the blocking factor l = 2w, i.e., with an increase of the number of processors
w. This is in accordance with the statistical analysis given in [4].

The number of parallel iterations steps needed for the convergence is an objec-
tive, machine independent measure of the algorithm’s performance. (Note that the
computational time depends very much on the organizational details of computations
adopted in a parallel computer, and the user has usually no direct access to influ-
ence these rules.) Comparing Table 3.1 and 3.2, the greedy dynamic ordering clearly
outperforms the cyclic one for all combinations of β and w. The ratio of the num-
ber of parallel iteration steps between the old method and the new one lies in the
range 1.9–3.0 (average is 2.4). For a given number of processors w, this ratio has a
tendency to grow with an increase of β, i.e., the greedy dynamic ordering is more
efficient in reducing the relatively larger off-diagonal norms of matrix blocks than the
cyclic ordering. This observation can be explained by the inherent property of the
greedy dynamic ordering to pair the matrix blocks with the maximal sum of Frobenius
norms.

Figure 3.1 depicts (in the logarithmic scale) the decrease of Frobenius norm of
the off-diagonal blocks for β = 50 and w = 10. Similar behavior can be observed also
for other combinations of β and w. The different final norms for the dynamic and
static cyclic ordering result from the fact that, in the case of cyclic ordering, the whole
sweep must end before the convergence criterion is checked. Notice that for the static
cyclic ordering there are many “empty” parallel iteration steps that do not change the
Frobenius norm of the off-diagonal blocks at all due to the prescribed combinations
of nondiagonal blocks that do not fulfil the criterion given by Eq. (3.3). These steps
correspond to the horizontal segments on the curve for the cyclic ordering in Fig. 3.1.
In other words, the static cyclic ordering of subproblems is, so to say, “blind”, because
it does not take into account the actual status of the matrix, i.e., how the overall
Frobenius norm is spread over the individual off-diagonal matrix blocks. Since the
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Fig. 3.1. Decrease of Frobenius norm of the off-diagonal blocks for β = 50 and w = 10

dynamic ordering combines the nondiagonal blocks with maximal Frobenius norms,
no such effect is observed in this case, and the Frobenius norm of the off-diagonal
blocks decreases strictly monotonically.

4. Conclusion. We have applied the new approach to the SVD computation
based on the parallel two-sided block-Jacobi algorithm with the greedy dynamic or-
dering to the updating problems in the LSI. First experimental results show that, for
a given accuracy, the greedy dynamic ordering is typically 2–3 times more efficient
with respect to the number of parallel iteration steps needed for the convergence than
the static cyclic ordering. More experimental and theoretical work needs to be done
to answer the question, if it is possible to explore fully the special, upper (lower)
triangular structure of certain matrices arising in Algorithms 1 and 2 using parallel
Jacobi-like algorithms.
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