
Proceedings of ALGORITMY 2002
Conference on Scientific Computing, pp. 230–236

COMBINATION GENETIC/TABU SEARCH ALGORITHM FOR
HYBRID FLOWSHOPS OPTIMIZATION ∗

M. ŽĎÁNSKÝ AND J. POŽIVIL†

Abstract. The paper describes an algorithm for solving the scheduling problem of a hybrid
flowshop (flowshop with multiple processors, FSMP). The algorithm is a combination of genetic
algorithm and tabu search, and the batch processes it is applied on are modeled by a model of
time requirements. The paper describes the algorithm and compares its performance with other
optimization techniques.

Key words. batch processes, scheduling, tabu search, genetic algorithms

AMS subject classifications. 68W99, 68M20, 90B36

1. Introduction. The highest portion of production of chemical commodities
comes from continuous processes, but batch processes also have their place in the
chemical industry. Batch processes are often found in low-volume manufacture of
products such as pure chemicals, specialty chemicals, pigments, pharmaceuticals, etc.
The advantages of batch processes include high flexibility that allows to quickly re-
act to changes in demands, to change technology based on current situation, and to
quickly introduce new or modified products. Batch processes also allow easier shar-
ing of some of the resources (e.g. production units, storage capacities, manpower).
Because a new product is likely to be manufactured on existing equipment, the empha-
sis is on process planning and control rather than on sizing the equipment. Current
trends in abovementioned industries are towards products with shorter life cycles and
higher functionality that are tailored to specific market niches, and consequently pro-
cess development problems are encountered very frequently. The development of new
or modified products “from scratch” would be too costly and time-consuming, and
so would be a purchase of new equipment, and for these reasons new products utilize
existing equipment. This means that the problem of production scheduling in these
plants is one of high importance.

Two categories of chemical batch plants are widely recognized: multi-product
plants and multi-purpose plants. In a basic serial multi-product plant, called flowshop,
the production line consists of a single set of m processing stages, the plant has
only one path for all products, and this path consists of a chain of stages where no
branches or loops exist. Hybrid flowshops can be derived from the classical multistage
flowshop, each stage being composed of one or more identical parallel machines (see
Fig. 1.1). Each machine is able to process one job at a time, and at least one stage
consists of more than one machine. This paper addresses the problem of finding
optimum schedule for a set of n jobs on such a configuration, and applies combination
genetic/tabu search algorithm to solve the problem. The objective function is the
makespan of a schedule.

∗This work has been supported by the Ministry of Education of the Czech Republic (program No.
MSM 223400007).

† Department of Computing and Control Engineering, Faculty of Chemical Engineering, Prague
Institute of Chemical Technology, Technická 1905, CZ-166 28 Praha 6, Czech Republic, Tel.: +420
2 2435 4259, Fax: +420 2 2435 5053, (Jaroslav.Pozivil@vscht.cz Martin.Zdansky@vscht.cz)

230



GENETIC/TABU SEARCH ALGORITHM 231

Fig. 1.1. Example of a Hybrid Flowshop topology

2. Problem Description. The flexibility of batch plants puts increased de-
mands on production planning and control. A series of campaigns, during which only
one or few of the whole range of products are manufactured, is usually a result of mid-
term planning. The individual campaigns are the input for the discussed problem of
production planning and scheduling (PPS). Efficient plant operation can be reached
using different optimization criteria, and one of the most used ones is minimization
of makespan; this requires that batches (more often called “jobs” outside chemical
industry) enter the flowshop in such an order that operations thorough chain of units
are as close to ,,lock step,, as possible. Finding optimum product sequence is an
NP-hard problem even for simple flowshops - see Garey [4].

Most of the heuristic algorithms for the m-stage flowshop scheduling problem can
be divided into four categories: applications of Johnson’s two-machine algorithm, the
use of a slope index for the batch processing times, the minimization of idle time
on machines, and stochastic techniques such as tabu search, genetic algorithms and
simulated annealing algorithms.

Palmer [9] first proposed a heuristic for minimizing makespan in a flow shop
scheduling problem. The heuristic generates a slope index for jobs and sequences
them in descending order of the index. Campbell et al. [3] developed a heuristic that
is a generalization of Johnson’s algorithm. Gupta [6] presented the minimum idle
time (MINIT) algorithm based on the minimization of idle time at the last machine.
Nawaz et al. [7] proposed that a job with larger total processing time should have
higher priority in the sequence. More recently, Ogbu and Smith [8] used simulated
annealing and Taillard [16] applied tabu search algorithm for makespan criteria.

The hybrid flowshop scheduling has attracted considerable attention in recent
years. Both optimizing and heuristic techniques have been used as a solution method-
ology. The optimizing techniques used so far are mostly branch and bound and mixed
integer programming. However, because of the NP-completeness of the problem,
heuristics have been, in our view, more popular.

Salvador [11] proposed the branch and bound approach to solve a special case
of permutation hybrid flowshop. Brah [2] formulated a mixed integer programming
hybrid flowshop model. Brah [1] also discussed the complexity of the problem and
establishes that the hybrid flowshop scheduling is indeed an NP-complete problem.
Sridhar and Rajendran [14] used simulated annealing approach to minimize the total
flow time. Santos et al. [12] developed a global lower bound for the FSMP makespan



232 M. ŽĎÁNSKÝ AND J. POŽIVIL

problem, and the same group of authors published an overview of various heuristics
[13].

Most recent developments usually use variants of branch and bound approach,
and try to combine them with other methods (e.g. Portmann et al. [10]), but other
approaches (e.g. neural networks) are also used.

The difficulty of the problem leads to the fact that most works that try to solve
such problems operate under some simplifying assumptions. The assumption we make
is limiting the search space to permutation schedules, an approach also used by most
other works on this problem.

3. Process Model. Batch processes can be modeled at many different levels of
abstraction, and each of these levels is best suited for different purpose. The simplified
models we use are based on time requirements of different operations occurring during
manufacture. Based on the degree of simplification, different types of models of time
requirements are recognized, but most of them are thanks to their nature flexible,
applicable to description of most batch processes, because the amount of process-
specific elements is zero or minimal. Hybrid flowshop, as defined here, is described
by following input data and assumptions:

• a set of n batches manufactured
• a set of m processing stages, arranged into a fixed sequence
• vector U , describing the topology of the plant; in hybrid flowshop at least

one processing stage contains more than one processing unit
• processing times matrix T , its elements tij corresponding to processing time

for operation j and product i
• a unit may only process one batch at a time
• once started, a unit must complete the processing of a batch
• all processing units in a single stage are identical in performance
• storage policy - algorithm was tested under one of the commonly used inter-

stage storage policies - unlimited intermediate storage (UIS)

A schedule for this problem is an assignment of units to batches that meets all the
constraints described above. The makespan of a schedule is the time of completion
of the last operation performed on a given set of batches minus the time the first
operation began at.

4. Combined Tabu Search/Genetic Algorithm. Our previous works on
scheduling problems showed us that both the tabu search and genetic algorithm are
suitable tools for solving such problems. Each algorithm, however, has some disad-
vantages. The algorithm we have developed is a combination of both approaches, and
tries to combine the positives of the two methods.

4.1. Tabu Search Principles. Rather than being a single algorithm, the tabu
search (TS) would be better described as a set of concepts that the algorithms falling
under this heading share [5]. For this reason, there is no single algorithm called tabu
search, and the discussion here is limited to algorithms we have used in our work.
The algorithm we use is descended from the local improvement techniques, and while
deterministic (at least in its basic variant) it is often classified as stochastic because of
its properties and behavior. Many of the variants of the algorithm incorporate some
random elements and are truly stochastic. Unlike downhill search it descended from,
the tabu search algorithm is able to leave local optimum and continue the search.
Tabu search heuristics starts from an initial solution, and at each step such a move to



GENETIC/TABU SEARCH ALGORITHM 233

a neighboring solution is chosen to hopefully improve objective criterion value. This
is close to a local improvement technique except for the fact that a move to a solution
worse than the current solution may be accepted. Algorithm tries to take steps to
assure that the method does not re-enter a solution previously generated which serve
as a way to avoid becoming trapped in local extreme. The variant of the algorithm we
use accomplishes this by recency-based data structure called tabu list that contains
the moves that are discouraged at the current iteration. A move remains a restricted
one only for a limited number of iterations. Algorithm is not guaranteed to find
optimum solution; however, experimental results show that even if not successful it
does find good near-optimum solution.

4.2. Genetic Algorithms. Genetic algorithms (GAs) are a general methodol-
ogy for searching a discrete solution space in a way that is similar to process of natural
selection procedure in biological systems. The algorithm is a remarkably general one,
and it can be applied to different problems if following conditions are met:

a) solutions to the problem can be expressed in form of a string of characters
b) a ,,fitness“ criterion, which in some way quantifies the quality of a solutions,

can be computed for any valid string
c) strings in which ,,part“ of a good solution is present are rewarded by allocation

of a higher fitness than ,,average“ strings

Genetic algorithms, as the name implies, are a type of algorithms, not a single one.
This means that many variants of the basic idea exist, and that individual applications
may be highly different. However, every variant should include following operations:
(1) a method for encoding solutions to the problem into a string of characters; (2) an
evaluation function which takes a string as an input and returns a fitness value which
measures the quality of the solution the strings describes; (3) an adaptive plan, whose
purpose is to produce new, improved generation of solutions from the current one.

The strings encoding the solutions are often binary coded. This encoding, how-
ever, is not well suited for our purpose. Instead, the string is composed of a sequence
of unique identifiers. Each identifier is represented by an integer number, and identi-
fies a corresponding batch. The use of such an alphabet does not violate the principles
of GAs. Encoding the solution in this way is enabled by the fact that the optimization
is performed under the assumption of permutation schedules. The strings containing
substrings with small makespan generally have smaller total makespan compared to
average strings, as required in c), allowing the use of GAs.

4.3. Combination Tabu search/Genetic algorithm. The algorithm com-
bines the principles of the two approaches. At initiation it creates a set of random
valid solutions, and for several iterations it optimizes them using tabu search-based
method. Then the algorithm applies genetic principles to the set of solutions, and this
creates a new generation of solutions. The solutions retained from the previous gen-
eration keep the associated tabu lists; new solutions begin with clear tabu lists. The
process of several tabu-principles iterations followed by a genetic-principles iteration
continues until computation termination criteria are met.

This approach combines the advantages of the two algorithms and mitigates the
disadvantages. Pure tabu search that uses only one solution can easily miss some
promising areas of the search space, and a larger set of parallel solutions does not ex-
change information. Genetic algorithms, thanks to the nature of the problem solved,
show lower solution quality with increasing problem size; the most prominent cause



234 M. ŽĎÁNSKÝ AND J. POŽIVIL

is the damage to solutions that occurs during solution crossover. The combined al-
gorithm we propose combines the parallelism and information-exchange of genetic
algorithms with a strong local optimization of the recency-based tabu search.

Tabu search components of the algorithm are similar to the pure tabu search
algorithm we have used in our previous works. We use fixed-length recency based
tabu list. The neighborhood generation method we use is pairwise exchange: it
exchanges positions of two batches in the schedule, and the move is selected using
fastest descent technique.

Genetic components are similar to GA described in [15]. Makespan of solutions
in a generation is transformed into fitness values in range 5-100. Parents of a new
generation are selected using deterministic reproduction with single-string elitism and
stochastic remainder sampling; the process uses the best makespan found since the
solution in question was evaluated in genetic iteration, not the current makespan
of the current solution. We use the crossover operator proposed in [15], with the
addition of a safeguard that allows crossover should all the chosen parents be copies
of one solution. In this case the algorithm selects a random other solution in the
current generation as the second parrent. Mutation operator used is random pairwise
exchange.

In this work the algorithm stops after a pre-set number of consecutive unsuccess-
ful genetic iterations. This means that computation stops when maximum number
of consecutive genetic-based steps that do not improve objective criterion value is
reached; the best solution that was found during this time is used as the result.

The evaluation function is based on the objective function, i.e. the computation
of makespan. Considering that the ranges of processing times, as well as other values,
can change for different applications, it is hardly possible to use the raw makespan
value, and it must be somehow transformed to allow better algorithm function. Details
on this transformation are included later in this paper.

Fitness new = Makespanmax ∗ 1.2− Makespan(4.1)

This new fitness is then transformed to a value in range < 5, 100 > using linear
interpolation, with the minimum fitness in a generation equal to 5 and the maximum
one to 100.

One of the advantages of heuristic algorithms such as the one we propose is the
way the constraints of the problem are treated. As long as neighborhood generation,
crossover, and mutation operators guarantee that only valid solutions will be gener-
ated, the algorithm itself does not have to take any constraints into account, because
all are incorporated into the objective function. This means that for similar problems
with different constraints the algorithm, aside from minor changes of parameters, re-
quires only rewriting of objective function calculation and associated code to become
applicable.

The random elements in the genetic parts of the algorithm guarantee asymptotic
convergence towards the global optimum, because the combination of stochastic re-
mainder sampling and mutations ensures that in infinite number of iterations the
algorithm visits all valid solutions (of which there is a finite number), including the
optimal ones.

5. Algorithm Evaluation. This paper present the results of preliminary tests
of the algorithm; the algorithm presented is still being developed, and we expect to
test it on a greater variety of problems (e.g. different intermediate storage policies,
larger problems)



GENETIC/TABU SEARCH ALGORITHM 235

Search success rate
[%]

Average computation time
[%]

Problem
dimension

TS/GA TS GA TS/GA TS GA

10/5 100 94 77 100 100 94
12/8 87 91 57 100 120 77
15/10 77 64 17 100 115 51

Table 5.1

Statistics of algorithm performance for various problem dimensions.

5.1. Test problems. As it was impossible to predict the exact nature of specific
real problems should the algorithm be applied to solution of such, we used a method
common in similar studies. The problems the program was tested on were sets of
randomly (within defined parameters) generated input data matrices. The dimensions
of solved problems varied, and the results presented in this paper are the ones for the
problems with n/m = {10/5, 12/8, 15/10}. The range of processing times was 1-50;
each stage contained 1 or 2 processing units.

5.2. Algorithm performance. The algorithm was tested against pure TS and
pure GA that use the same principles as the algorithm we propose. The results
indicate that performance of the combined algorithm is better than that of either
pure TS or pure GA.

Low performance of the GA is, we believe, caused by fitness scaling function we
use. We tried linear fitness scaling, and while the search success rate for 10/5 problems
went up to 97%, the program occasionally failed because of problems caused by linear
fitness scaling and associated code (one of the reasons for such errors were problems
with floating point operations precision).

6. Conclusions. The algorithm we have proposed is able to optimize sched-
ules for a hybrid flowshop, minimizing the makespan, and the performance of this
algorithm is better than of both pure tabu search and pure genetic algorithm. The al-
gorithm is, thanks to its composite nature, more adaptable to changes, and retains the
advantages commonly associated with heuristics. Solution quality is higher than for
tabu search, and the random elements in the genetic parts of the algorithm guarantee
asymptotic convergence towards the global optimum.

REFERENCES

[1] S. A. Brah: Complexity of the flow shop with multiple processors scheduling problem, and
some dominance conditions, in: Phua, K.H. et al. (Ed.), Optimization: Techniques and
Applications, 1 (1992), World Scientific, Singapore, pp. 538-545

[2] : Scheduling in a Flow Shop with Multiple Processors, Dissertation Abstracts Interna-
tional 50 (1988), 1587B (University Microfilms No. 89-122667)

[3] H. G. Campbell, R. A. Dudek, and M. L. Smith: An heuristic algorithm for the n job m
machine sequencing problem, Management Science, 16/B (1970), 630–637.

[4] M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA, 1979.

[5] F. Glover and M. Laguna: Tabu search, Kluwer Academic Publishers, 1997.
[6] J. N. D. Gupta: Heuristic algorithms for multistage flowshop scheduling problem, AIIE Trans-

actions, 4 (1) (1972), 11–18.



236 M. ŽĎÁNSKÝ AND J. POŽIVIL

[7] M. Nawaz, E. Enscore, and I. Ham: A heuristic algorithm for the m machine, n job flow shop
sequence problem, OMEGA, 11 (1) (1983), 91–95.

[8] F. A. Ogbu and D. K. Smith: The application of the simulated annealing algorithm to the
solution of the n/m/Cmax flowshop problem, Computers & Operations Research, 17 (3)
(1990), 243–253.

[9] D. S. Palmer: Sequencing jobs through a multi-stage process in the minimum total time - A
quick method of obtaining a near optimum, Operations Research Quarterly, 16 (1) (1965),
101–107.

[10] M.-C. Portmann, A. Vignier, D. Dardilhac, and D. Dezalay: Branch and bound crossed with
GA to solve hybrid flowshops, European Journal of Operational Research, 107 (2) (1998),
389–400.

[11] M. S. Salvador: A solution to a special case of flow shop scheduling problems, in: Elmaghraby,
S.E. (Ed.), Symposium of the Theory of Scheduling and Applications, 1973, Springer, New
York.

[12] D. L. Santos, J. L. Hunsucker, and D. E. Deal: Global lower bounds for flow shops with multiple
processors, European Journal of Operational Research, 80 (1995), 112–120.

[13] : Evaluation of sequencing heuristics in flow shops with multiple processors, Computers
& Industrial Engineering, 30 (4) (1996), 681–692.

[14] J. Sridhar and C. Rajendran: Scheduling in a cellular manufacturing system: A simulated
annealing approach, International Journal of Production Research, 31 (12) (1993), 2927–
2945.

[15] P. Stluka: Využit́ı prvk̊u umělé inteligence při rozvrhováńı vsádkových výrob (Use of artificial
intelligence for scheduling of batch operations), Ph.D. thesis at VŠCHT Praha (1998).

[16] E. Taillard: Some efficient heuristic methods for the flow shop sequencing problem, European
Journal of Operational Research, 47 (1) (1990), 65–74.


