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ORDER OF CONVERGENCE ESTIMATES IN TIME AND SPACE

FOR AN IMPLICIT EULER, MIXED FINITE ELEMENT

DISCRETIZATION OF RICHARDS’ EQUATION BY EQUIVALENCE

OF MIXED AND CONFORMAL APPROACH

FLORIN RADU∗, IULIU SORIN POP† , AND PETER KNABNER∗

Abstract. We analyse a discretization method for a class of degenerate parabolic problems
that includes the Richards’ equation. This analysis applies to the pressure-based formulation and
considers both variably and fully saturated regimes. To overcome the difficulties arising from the
lack in regularity, we first apply the Kirchhoff transformation and then formulate a continous mixed
variational formulation for a time-integrated version of the equation. Based on this we discretize
using in time a scheme equivalent with backward Euler and in space the lowest order Raviart-Thomas
elements. Simultaneously, a continous and a semidiscrete (continous in time) conformal variational
formulations are stated and the equivalence between the corresponding mixed and conformal schemes
is proved. This allows the use of techniques specific for conformal elements to get error estimates
for the mixed finite element approach. Numerical results are presented to confirm our theoretical
analysis, in particular showing the convergence of the scheme. The advantage of our approach is
that the convergence was obtained without any extra regularity assumptions.
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1. Introduction. An appropriate model for the ground water movement, taking
into acccount the unsaturated subregions near the surface, is the Richards’ equation, a
nonlinear degenerate parabolic partial differential equation. In this paper the equation
will be considered in its pressure formulation

∂tΘ(ψ) −∇ ·K(ψ)∇(ψ + z) = 0(1)

where ψ is the pressure head, Θ the saturation, K the conductivity and z the height
against the gravitational direction. The Richards’ equation describes the flow of a
wetting fluid (water) in a porous medium in the presence of a non-wetting fluid (air)
supposed to be at constant pressure, 0. It includes partially to fully water saturated
regimes but can not be applied to completely dry soils. It results from the requirement
of mass conservation (in form of volume conservation assuming the incompressibility
of water):

∂tΘ(ψ) + ∇ · q = 0(2)

and Darcy’s law

q = −K(ψ)∇(ψ + z),(3)

with q denoting the flux. There are two coefficients functions: the soil-water retention
Θ(ψ), relating the saturation and the pressure and the unsaturated hydraulic conduc-
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tivity K(ψ), relating the conductivity and the pressure. Different functional depen-
dencies (retention curves) between ψ, K and Θ are proposed in the literature. These
are provided essentially by soil particularities and allow reducing all the unknowns
in the above equation to a single one. For negative pressure values, corresponding
to unsaturated subregions, the nonlinearities are monotone non-decreasing, therefore
(1) is a (strongly) nonlinear parabolic equation there, but positive pressure values
lead to a constant value of maximum saturation and represent the region below the
ground water table, where the pressure obeys an elliptic equation. The transition
from unsaturated to dry is here not considered, therefore the equation never becomes
hyperbolic. As a consequence we deal with a nonlinear elliptic-parabolic equation
whose solution is tipically lacking in regularity.
More regular unknowns could be obtained by applying the Kirchhoff transformation

K : IR −→ IR

ψ 7−→

∫ ψ

0

K(Θ(s)) ds.(4)

Since K(Θ(s)) is positive, this transformation can be inverted and equation (1) can
be rewritten in terms of a new variable, u := K(ψ). Defining now

b(u) := Θ ◦ K−1(u)
k(b(u)) := K ◦ Θ ◦ K−1(u),

(5)

and letting ez denote the vertical unit vector, equation (1) becomes

∂tb(u) −∇ · (∇u+ k(b(u)) ez) = 0 in (0,T) × Ω.(6)

Also after the transformation the equation still remains degenerate and we expect
only ∂tb(u) ∈ L2(0, T ;H−1(Ω)) which does not allow for a mixed variational formu-
lation being the basis for a mixed finite element discretization. To overcome this we
follow an ideea of Nochetto [15], used also from Arbogast [2] and Woodward [22], to
formulate a continuous mixed formulation for a time-integrated version of the conser-
vation equation (2). Based on this we discretize using in time a scheme equivalent
with backward Euler, together with a regularization step, and in space the lowest
order Raviart-Thomas elements for the flux variable and piecewise constant elements
for the pressure head. Specifically, with N > 0 integer, set τ = T/N and let Th being
a decomposition of Ω into closed d-simplices; h stands for the mesh-size. Then the
numerical scheme under consideration reads

bε(p
n
h) + τ∇qn

h
= bε(p

n−1
h ),

qn

h + ∇pnh + k(b(pnh))ez = 0,

for n = 1, N ; p0
h approximates u0 in the finite dimensional approximation space. Here

bε is a regular approximation of b depending on the small parameter ε > 0. By pnh
we denote the piecewise constant approximation of u and qn

h
is the Raviart-Thomas

(RT0) approximation of the flux -(∇u+ k(b(u))ez), based on Th, both at t = nτ .
Convergence is shown by obtaining first error estimates for the time discrete

scheme, by following the ideas in [15]. Next, using the procedure described in [2], error
estimates for the fully discrete scheme are obtained. In this setting, the equivalence
between the two different formulations becomes essential since in this way results
obtained for the conformal method can be transferred to the mixed one and viceversa.
The results are given here without proofs, which can be found in [19].
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2. Equivalent variational formulations. In what follows Ω is a domain in
IRd (with d = 1, 2 or 3). Let J = (0, T ] be a finite time interval. We are interested in
solving equation (6) endowed with initial and boundary conditions,

∂tb(u) −∇ · (∇u+ k(b(u))ez) = 0 in J × Ω,
u = u0 in 0× Ω,
u = 0 on J × Γ.

(7)

Throughout this paper we make use of the following assumptions:
(A1) Ω is bounded with Lipschitz continuous boundary.
(A2) b ∈ C1 is non-decreasing and Lipschitz continuous.
(A3) k(b(z)) is continuous and bounded in z and satisfies, for all z1, z2 ∈ IR,

| k(b(z2)) − k(b(z1)) |
2≤ Ck(b(z2) − b(z1))(z2 − z1).

(A4) b(u0) is essentially bounded (by 0 and 1) in Ω and u0 ∈ L2(Ω).
Because fully air saturated regime has been not included in our analysis the As-

sumption (A2) is generally satisfied. Assumption (A3) is a relaxation of the Lipschitz
continuity of k with respect to the saturation (e.g as is assumed in [22]).

Here and below (·, ·) stands for the inner product on L2(Ω) or the duality pairing
between H1

0 (Ω) and H−1(Ω), ‖·‖ for the norm in L2(Ω), ‖·‖1 and ‖·‖−1 for the norms
in H1(Ω), respectively H−1(Ω). We use analogous notations for the inner product
and the corresponding norm on L2(0, T ;H), with H being either L2(Ω), H1(Ω), or
H−1(Ω). In addition, we often write u or u(t) instead of u(t, x) and use C to denote
a generic positive constant, not depending on the discretization or regularization
parameters.

Existence, uniqueness and essential bounds for a weak solution of problem (7)
is studied in several papers (see, for example, [1], [16], and the references therein).
Following [2] or [22] we integrate (7) in time and obtain, for every t ∈ J ,

b(u(t)) + ∇ ·

∫ t

0

q (s) ds = b(u0)(8)

in L2 sense. From [2], the flux q := − (∇u+ k(b(u))ez) satisfies

∫ t

0

q dτ ∈ H1(J ; (L2(Ω))d) ∩ L2(J ; (H1(Ω))d) =: X.(9)

We proceed by stating the variational formulations. Essential for the convergence
proof will be the equivalence between the conformal formulation and the mixed one.

2.1. The continuous case. Integrated in time, problem (7) becomes
Problem 1. Find u ∈ L2(J,H1

0 (Ω)) such that b(u) ∈ L∞(J × Ω), and for all t ∈ J
and φ ∈ H1

0 (Ω) it holds

(b(u(t)) − b(u0), φ) +

∫ t

0

(∇u(s) + k(b(u(s)))ez,∇φ)ds = 0.(10)

Here b(u) models the water content, hence it is natural to assume it bounded almost
everywhere in J × Ω. Moreover, u ∈ L2(0, T ;H1

0 (Ω)) yields b(u) ∈ L2(0, T ;H1
0(Ω))

due to the Lipschitz continuity of b. Since b(u) ∈ H1(0, T ;H−1(Ω)) we have b(u) ∈
C(0, T ;L2(Ω)) (see [14], chapter I), allowing a simplified mixed variational formula-
tion.
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A mixed formulation for Problem (7) reads
Problem 2. Find (p, q̃) ∈ L2(J × Ω)) ×X such that b(p) ∈ L∞(J × Ω) and for all
t ∈ J the equations

(b(p(t)) − b(p0), w) + (∇q̃(t), w) = 0,(11)

(q̃(t),v) −

∫ t

0

(p(s),∇v)ds +

∫ t

0

(k(b(p(s)))ez,v)ds = 0,(12)

hold for all w ∈ L2(Ω) and v ∈ H(div,Ω), with p0 = u0 ∈ L2(Ω).
The two problems are equivalent, as stated below.

Proposition 2.1. u ∈ L2(J,H1
0 (Ω)) solves Problem 1 iff (p, q̃) ∈ L2(J×Ω))×X

defined as

(p, q̃) = (u,−

∫ t

0

(∇u(s) + k(b(u(s)))ez)ds)(13)

solves Problem 2. Moreover, in this case we have p ∈ L2(J,H1
0 (Ω)).

2.2. The semidiscrete case. As mentioned in the introduction, difficulties due
to degeneracy can be overcomed by perturbing the original equation to a regular
parabolic one. Such a technique has been successfully applied in the analysis of
degenerate problems, and also allows developing effective numerical schemes (see, for
example, [15], [8], or [18]). Here we approximate b by bε, where ε > 0 is a small
perturbation parameter. A possible choice reads

bε(u) = b(u) + εu.(14)

bε has the same properties as b but its derivative is bounded from below by ε.
With N > 1 being an integer giving the time step τ = T/N and tn = nτ , the

regularized semidiscrete conformal problem reads
Problem 3. Let n = 1, N and un−1 be given. Find un ∈ H1

0 (Ω) such that, for all
φ ∈ H1

0 (Ω),

(bε(u
n) − bε(u

n−1), φ) + τ(∇un + k(b(un))ez,∇φ) = 0.(15)

Its mixed time discrete counterpart becomes
Problem 4. Let n = 1, N and pn−1 given. Find (pn, qn) ∈ L2(Ω) ×H(div,Ω) such
that

(bε(p
n) − bε(p

n−1), w) + τ(∇qn, w) = 0,(16)

(qn,v) − (pn,∇v) + (k(b(pn))ez,v) = 0,(17)

for all w ∈ L2(Ω), respectively v ∈ H(div,Ω), with p0 = u0 ∈ L2(Ω).
As in the continuous case, the two problems above are equivalent.

Proposition 2.2. Let n = 1, N be fixed and assume un−1 = pn−1. Then
un ∈ H1

0 (Ω) solves Problem 3 iff (pn,qn) ∈ L2(Ω) ×H(div,Ω) defined as

(pn,qn) = (un,−(∇un + k(b(un))ez))(18)

solve Problem 4. Moreover, we have pn ∈ H1
0 (Ω).

3. Error Estimates. Due to the equivalences proven above, stability and error
estimates for the time discrete mixed formulation can be obtained by analyzing, using
technigues from [15], the Euler implicit scheme applied to Problem 3.
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3.1. Error estimates for the semidiscrete scheme. We use the notations

un = 1
τ

∫ tn
tn−1

u(t)dt,

p∆(t) = pn, for t ∈ (tn−1, tn] ,

eb(u) = b(u) − bε(p∆),

(19)

where n = 1, N and u0 = u0.
For the semidiscrete mixed discretization scheme we obtain the following
Theorem 3.1. Assuming (A1) - (A4), if u is the weak solution of Problem 1

and (pn,qn) solve Problem 4 (n = 1, N), we get

∑N

n=1

∫ tn
tn−1

(bε(u(t)) − bε(p
n), u(t) − pn)dt

+ ‖
∑N

n=1

∫ tn
tn−1

(u(t) − pn)dt‖2
1 + ‖q̃(T ) − τ

∑N

n=1 qn‖2

≤ C(τ + ε).

(20)

Remark 3.1. Since bε is a perturbation of order ε for b we can replace the scalar

product in (20) by
∫ T
0 (b(u(t)) − b(p∆(t)), u(t) − p∆(t))dt. This immediately implies

an error estimate for the saturation,

∑N

n=1

∫ tn
tn−1

‖b(u(t)) − b(pn)‖2dt ≤ C(τ + ε).

3.2. Estimates for the fully discrete scheme. For the spatial discretization we let

Th be a regular decomposition of Ω ⊂ IRd into closed d-simplices; h stands for the
mesh-size. To avoid technicalities, Ω is assumed polygonal, satisfying Ω = ∪T∈Th

T .
The discrete subspaces Wh × Vh ⊂ L2(Ω) ×H(div,Ω) are defined as

Wh := {p ∈ L2(Ω)| p is constant on each element T ∈ Th},

Vh := {q ∈ H(div,Ω)|q|T = a + bx for all T ∈ Th}.
(1)

So Wh denotes the space of piecewise constant functions, while Vh is the RT0 space
(see [5]). Further we make use of the usual L2 projector

Ph : L2(Ω) →Wh, ((Phw − w), wh) = 0 ∀wh ∈Wh.(2)

Taking Ṽ = (H1(Ω))d a projector Πh can be defined as (see [5], p.131)

Πh : Ṽ → Vh, (∇ · (Πhv − v), wh) = 0(3)

for all wh ∈Wh. With r ≥ 0, for the operators defined above we have

‖w − Phw‖ ≤ Chr‖w‖r,

‖v − Πhv‖ ≤ Chr‖v‖r,
(4)

for any w ∈ Hr(Ω) and v ∈ (Hr(Ω))d.
In order to can apply the projector Πh to the flux variable we have to assume

some more regularity:
(A5) q ∈ L∞(0, T ; (H1(Ω))d).
Remark 3.2. Obviously (A5) is fulfilled in one spatial dimension, since in this

case H(div,Ω) and H1(Ω) coincide.
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Before proceeding with the fully discrete approximation scheme we rewrite Prob-
lem 4 (continuous in space) as

Problem 5. Let n = 1, N . Find (pn,qn) ∈ L2(Ω) ×H(div,Ω) such that

(bε(p
n), w) − (bε(p

0), w) + τ(

n∑

j=1

∇qj , w) = 0,(5)

(qn,v) − (pn,∇v) + (k(b(pn))ez,v) = 0,(6)

for all w ∈ L2(Ω) and v ∈ H(div,Ω), with p0 = u0.
The fully discrete mixed finite element approximation reads

Problem 6. Let n = 1, N . Find (pnh, q
n
h) ∈ Wh × Vh such that

(bε(p
n
h), wh) + τ(

n∑

j=1

∇q
j
h, wh) = (bε(p

0
h), wh),(7)

(qn

h,vh) − (pnh,∇vh) + (k(b(pnh))ez,vh) = 0,(8)

for all wh ∈Wh and vh ∈ Vh.
Applying techniques developed in [2] we estimate the errors induced by the spatial

discretization.
Theorem 3.2. Assuming (A1)-(A5), if (pn,qn) ∈ L2(Ω)×H(div,Ω), (pnh,q

n

h
) ∈

Wh × Vh solve, for n = 1, N , Problems 5 and 6, we obtain

∑N

n=1(bε(p
n) − bε(p

n
h), p

n − pnh) + τ
∑N

n=1 ‖Πhq
n − qn

h
‖2 +

+τ‖
∑N

n=1(q
n − qn

h
)‖2 + τ‖

∑N

n=1(p
n − pnh)‖

2 ≤ C h2

τ
.

(9)

Combining the estimates in Theorems 3.1 and 3.2 we get, for the fully discrete
scheme

Theorem 3.3. Assuming (A1)-(A5) there holds

‖
∑N

n=1

∫ tn
tn−1

(u(t) − pnh)dt‖
2 + ‖

∑N

n=1

∫ tn
tn−1

(q(t) − qn

h
)dt‖2 ≤

≤ C(τ + ε+ h2).
(10)

4. Numerical Results. To confirm our theoretical results we present a numeri-
cal test. We consider a problem allowing for a travel wave solution, as proposed in [9],
which refers to the Richards’ equation in its form after the Kirchhoff transformation
(6), without gravitation term and with

b(u) =

{
π2

2 − u2

2 for u ≤ 0
π2

2 for u > 0.

For this problem an exact solution is known

uex(t, x, y) =

{
−2(es−1)
es+1 for s ≥ 0

−s for s < 0

where s = x − y − t. The equation has been solved in the unit square Ω, with
Dirichlet boundary condition given by u = uex on ∂Ω and initial value uex at t = 0.
Computations are carried out for final time T = 1.0.
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Table 1

Numerical results.

N τ h τ + h2 error convergence order
1 0.04 0.25 1.025000e-01 6.344201e-06 —
2 0.02 0.176 5.125000e-02 3.620119e-06 0.81
3 0.01 0.125 2.562500e-02 2.057356e-06 0.82
4 0.005 0.088 1.281250e-02 9.574634e-07 1.10
5 0.0025 0.0625 6.406250e-03 5.362175e-07 0.84
6 0.00125 0.044 3.203250e-03 2.431734e-07 1.14
7 0.000625 0.03125 1.601562e-03 1.355397e-07 0.84

For mixed finite element discretizations the emerging algebraic system of equa-
tions is difficult to solve due to being the solution of a saddle point problem. A
common implementation procedure is to enlarge the system by adding Lagrange mul-
tipliers on edges (hybridization of the method). Briefly, within one time step the
resulting algorithm reads: first the flux variable is eliminated on each element, then
the continuity equation is locally solved for pressure by a variably damped Newton’s
method. The global system is set for the Lagrange multipliers and solved using again
a Newton procedure. Linear iterations are solved by multigrid methods (see [21] for
implementation details). The algorithm is implemented in UG (version 3.8, see also
[3]) and calculations are done on a SUN workstation.

We have started performing computations on a uniform triangular mesh with
h = 0.25 and a time step τ = 0.04. Then τ and h2 are successively halved, up to
τ = 0.000625 and h = 0.03125. Knowing the exact solution, the square of the total
error (as written in (10)) is given by

E2
tot = ‖

∑N

n=1

∫ tn
tn−1

(uex(t) − pnh) dt‖
2 + ‖

∑N

n=1

∫ tn
tn−1

(qex(t) − qn

h
) dt‖2,

where qex = −∇ uex is the exact flux. The order of convergence (for the squared
error) is estimated by dividing the errors above, computed for two sets of parameters
(refined according to the procedure mentioned above). Dividing the natural logarithm
of the result by the natural logarithm of the refinement ratio yields an approximation
of the convergence order. Results are displayed in Table 1. As predicted by Theorem
3.3, the convergence order approaches 1. Hence we can conclude that numerical results
are in concordance with our theoretical analysis, in particular proving the convergence
of the scheme.

REFERENCES

[1] H. W. Alt, S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183

(1983), 311–341.
[2] T. Arbogast, M. F. Wheeler, N. Y. Zhang, A nonlinear mixed finite element method for a

degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal. 33

(1996), 1669–1687.
[3] P. Bastian, K. Birken, K. Johanssen, S. Lang, N. Neuß, H. Rentz-Reichert and C.

Wieners, UG–a flexible toolbox for solving partial differential equations, Comput. Visualiz.
Sci., 1 (1997), pp. 27–40.

[4] J. Bear, Y. Bachmat, Introduction to Modelling of Transport Phenomena in Porous Media,
Kluwer Academic, Dordrecht, 1991.

[5] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, New York,
1991.

[6] M. A. Celia, E. T. Bouloutas, R. L. Zarba, A general mass-conservative numerical solution for
the unsaturated flow equation, Water Resour. Res. 26 (1990), 1483–1496.



ORDER OF CONVERGENCE ESTIMATES 65

[7] R. Eymard, M. Gutnic, D. Hillhorst, The finite volume method for Richards equation, Comput.

Geosci. 3 (1999), 259–294.
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Beiträge zur Hydrologie, Kirchzarten, 1984.
[10] P. Knabner, Finite element simulation of saturated-unsaturated flow through porous media,

in Large Scale Scientific Computing, P. Deutlhard et al., eds., Progress in Scientific Com-
puting, Vol. 7, Boston, 1987, pp. 83–93.

[11] P. Knabner, E. Schneid, Adaptive hybrid mixed finite element discretization of instationary
variably saturated flow in porous media. In: M. Breuer et al. (eds.), High Performance

Scientific and Engineering Computing, Springer, Berlin, 2002, to appear.
[12] P. Knabner, E. Schneid, Numerical solution of unsteady saturated/unsaturated flow through

porous media. In: M. Feistauer et al. (eds.), Numerical Modelling in Continuum Mechanics,
Part II, Prague, 1997, 337–343.

[13] O. A. Ladyzhenskaya, N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic
Press, London, 1968.

[14] J. L. Lions, E. Magenes, Non Homogenous Boundary Value Problems and Applications, Vol.
I, Springer Verlag, Berlin, 1972.

[15] R. H. Nochetto, C. Verdi, Approximation of degenerate parabolic problems using numerical
integration, SIAM J. Numer. Anal. 25 (1988), 784–814.

[16] F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differ-

ential Equations, 131 (1996), 20–38.
[17] I. S. Pop, Error estimates for a time discretization method for the Richards’ equation, RANA

Preprint 16-01(2001), Eindhoven University of Technology, submitted.
[18] I. S. Pop, W. A. Yong, A numerical approach to degenerate parabolic equations, Numer. Math.

(accepted).
[19] F. Radu, I. S. Pop, P. Knabner, Error estimates for an Euler implicit, mixed finite element

discretization of Richards’ equation: equivalence between mixed and conformal approaches,
RANA Preprint 02-06(2002), Eindhoven University of Technology.

[20] J. Rulla, Error analysis for implicit approximations to solutions to Cauchy Problems, SIAM J.

Numer. Anal. 33 (1996), 68–87.
[21] E. Schneid, Hybrid-Gemischte Finite-Elemente-Diskretisierung der Richards-Gleichung (in

German), Ph.D. thesis, University of Erlangen–Nürnberg, 2000.
[22] C. Woodward, C. Dawson, Analysis of expanded mixed finite element methods for a nonlinear

parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer.

Anal. 37 (2000), 701–724.


