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ON THE EVOLUTION OF HEAT AND MOISTURE

IN BUILDING MATERIALS ∗

JIŘÍ VALA †

Abstract. The paper discusses some possibilities of mathematical modelling of the problem of
slow redistribution of heat, driven by transfer of moisture in various phases in building materials
and constructions. The study of a structure of real building materials generates the system of at
least two macroscopic equations of evolution, containing two unknown fields of temperature and
pressure, with some initial and boundary conditions. Unfortunately, the standard mathematical
analysis, based on the method of Rothe, is not available here, as the parabolic part of the system is
not symmetric and cannot be easily converted to the symmetric one as in the classical case with time-
independent material characteristics. Nevertheless, some existence and convergence results can be
derived, applying other transformations, forcing certain symmetry in the elliptic part of the system.
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1. Modelling of heat and moisture transfer. Both the durability and the
comfortable exploitation of particular building elements and complete structures and
engineering constructions are influenced by two basic physical processes – of the heat
transfer and of the diffusion of moisture through a system of pores. Such pores can
have various sizes (from micro- to macroscopic ones) and mutual positions, depending
on the choice of materials, usually determined by the requirement of minimization of
strain and stresses, caused by external static or dynamic loads, a posteriori supplied
by special insulation layers to ensure an acceptable thermal stability of the whole
structure (cf. [18]). The redistribution of moisture in materials is (related to the heat
transfer) a very slow process, which complicates any practical validation of outputs
from numerical solvers, based on some physical and mathematical simplifications.
Nevertheless, to obtain results not far from the realistic ones, at least a coupled
problem of evolution of two unknown fields, typically of the temperature T and the
pressure p, with appropriate initial and boundary conditions should be analyzed, using
a differential (classical) or an integral (weak, variational) form of the equations for
heat and moisture balance.

Probably the simplest system of this type, proposed by [13] originally, is the
system “for the non-stationary transfer of heat and mass” (in practice, mass is un-
derstood as water in various phases) on a domain Ω in R2, presented in the textbook
[10], p. 210:

Aτ̇ = ∇2τ + KAφ̇ , Aφ̇ = LP∇2τ + L∇2φ .

In its equations (where dots denote time derivatives) all multiplicative factors are con-
sidered as positive constants: A is the thermal diffusivity (as defined in [10], p. 203),
P the Posnov number, K the Kossovich number and L the Luikov number (introduced
in [10], pp. 132, 134, 138). Let us notice that certain so-called moisture potential φ, is
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used here instead of p; unfortunately, this φ (unlike p) has no transparent physical
meaning and often (as in [8], namely for higher moisture concentrations) comes from
strange empirical relations. Alternative forms of this linear system, whose solution is
known, force the symmetry either in the parabolic part or in the elliptic one; their
non-substantial modifications (preserving linearity) can be found in later publications:
e. g. [4] refers to [12], presenting (in English) the same approach as [13] (in Russian).

For reasonable applications in civil engineering the assumption on constant mate-
rial characteristics is too strict: it is well-known that the heat transfer factor depends
both on T and p (or φ) and the nonlinear behaviour of other characteristics (as ob-
served in laboratories) seems to be even stronger; this is partially reflected also in
[10], p. 205. Therefore the simplest acceptable system is the quasilinear one

b(u)u̇ = ∇(a(u)∇u) + f(u) ,(1.1)

where a and b are square matrices of material characteristics of order 2, f is a column
vector of internal sources of order 2 (time-dependent in general) and u = (T, p)T ; for
simplicity we shall consider (as in [10], p. 210) a plane problem on Ω ⊂ R2 only. The
system of such type (with p replaced by φ), based on the extensive experimental work
(but without deeper physical and mathematical analysis), was investigated in [8];
more historical information can be found in [1]. The system (1.1) was then proposed
in [11] and later used e. g. in [16] and [9] (with neglected non-diagonal elements in
b(u)). In addition, let us consider such column vector g of external sources of order 2
(time-dependent in general) that

g(u) = ν · a(u)∇u on Γ ,

where ν is the column unit vector ν of the local outside normal of order 2, defined
on certain subset Γ of ∂Ω, and that the standard Green-Ostrogradskǐı theorem for a
domain Ω is valid. Then (1.1) receives the integral form

∫

Ω

v · b(u)u̇dµ +

∫

Ω

∇v · a(u)∇u dµ =

∫

Ω

v · f(u) dµ +

∫

Γ

v · g(u) dσ(1.2)

(the standard Lebesgue measure µ on Ω is used here, σ denotes the surface Hausdorff
measure on ∂Ω, the sign · is used for dot products both in R2 and in R2×2, the
dependance of u, f , g on the time t is not emphasized explicitly) for any v ∈ V , where
V is a subspace of the Sobolev space W 1,2(Ω, R2) satisfying prescribed homogeneous
Dirichlet boundary conditions on ∂Ω \ Γ. To avoid technical difficulties, we shall
suppose a, b ∈ C(Ω, R2×2) (if necessary, to substitute the continuity here e. g. by the
piecewise continuity is not difficult), f ∈ CL(I, L2(Ω, R2)) and g ∈ CL(I, L2(Γ, R2));
the lower index L forces the Lipschitz continuity.

The aim of the existence and convergence analysis for (1.2) is: (i) to find some
u ∈ L∞(I, V ) with u ∈ L2(I, L2(Ω, R2)) satisfying (1.2) for certain time interval
I = {t ∈ R : 0 ≤ t ≤ T} of a finite positive length T such that its initial value
u(0) coincides with the prescribed u0 ∈ V and (ii) to receive u as a limit of solutions
of a sequence of some elliptic problems (instead of the original parabolic one). The
standard approach, based on the method of Rothe (of semi-discretization with respect
to time), analyzed in [7], does not handle non-symmetrical matrices b(u). Thus, the
main difficulty is that no tricks like multiplying by b(u)−1 or b(u)T in (1.1) from
the left (compatible with the choice of v in (1.2)) are available, since all elements of
the matrix b(u) are far from constants in practice. The modified approach of [19]
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admits various non-symmetrical matrices b(u), but needs the seemingly non-realistic
symmetry in the elliptic part. In the following text we shall demonstrate that such
symmetry can be preserved thanks to special transformations, whose design requires
solving some non-trivial auxiliary problems.

2. Sequences of Rothe. Let us introduce the family M of all continuously
differentiable mappings defined on V with values in R2×2. If α ∈ M then the trans-
formation v = α(w)w is available for any w ∈ V and returns v ∈ V again; moreover,
such mapping α̂ from V to C(Ω, R2×2) can be constructed that ∇v = α̂(w)∇w. More
precisely: for i, j, k, l ∈ {1, 2}, using the Einstein summation rule for j, l, we have
vi = αij(w)wj and

vi,k = αij(w)wj,k + αij,l(w)wl,kwj = (αij(w) + αil,j(w)wl) wj,k = α̂ij(w)wj,k

(in the whole paper we use Cartesian coordinates and corresponding derivatives).
Let us notice that the inverse problem of practical calculation of α ∈ M to some
given α̂ is non-trivial. In particular cases: (i) if α̂ is independent of w then α = α̂
evidently, (ii) if αij = αi,j for some potentials αi and any i, j ∈ {1, 2} then the
whole system degenerates to separate equations α(w) + α,1(w)w1 + α,2(w)w2 = α̂(w)
(indices i, j may be omitted here), convertible (using the transformation to polar
coordinates x1 = ρ cosω, x2 = ρ sin ω, ρ ≥ 0, 0 ≤ ω < 2π) to the easily solvable form
α(w)+ρα′(w) = α̂(w) (′ is used for the partial derivative by ρ here), (iii) in some more
complicated cases various analytical constructions of first integrals, described in [17],
p. 44, are available, (iv) in more general cases no analytical solutions are known and
the existence considerations similar to those from [15], based on the Leray-Schauder

fixed point theorem, must be done. Let us assume that b(v) = β̂(v) (derived in
the same way as α̂ from α) for some β ∈ M and each v ∈ V ; this implies e. g.

(β(u)u)· = β̂(u)u̇ = b(u)u̇. Choosing v = α(w)w with w ∈ V , from (1.2) we obtain

∫

Ω

α(w)w·[β(u)u]·dµ+

∫

Ω

α̂(w)∇v ·a(u)∇u dµ =

∫

Ω

α(w)w·f(u) dµ+

∫

Γ

α(w)w·g(u) dσ

and consequently

∫

Ω

α(w)w · β(u)u dµ −

∫

Ω

α(w)w · b(u0)u0 dµ +

∫ t

0

∫

Ω

α̂(w)∇w · a(ũ)∇ũ dµ dt̃(2.1)

=

∫ t

0

∫

Ω

α(w)w · f(ũ) dµ dt̃ +

∫ t

0

∫

Γ

α(w)w · g(ũ) dσ dt̃ ,

where ˜ informs that corresponding values are taken in time t̃ (instead of t, 0 ≤ t̃ ≤ t).
Let us study a discrete analogue of (2.1)

h−1

∫

Ω

α(w)w · [β(us)us − β(us−1)us−1] dµ +

∫

Ω

α̂(w)∇w · a(us)∇us dµ(2.2)

=

∫

Ω

α(w)w · fs(us) dµ +

∫

Γ

α(w)w · gs(us) dσ ,

where um
s ∈ V for s ∈ {1, . . . , m} (the upper index m is usually omitted for brevity)

are unknown time-independent functions, m is an arbitrary positive integer, h = T/m
and the indices in fm

s and gm
s emphasize that corresponding values are taken in time

sh (as f and g in (2.1) can depend on t directly, not only thanks to u). The sequence
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of Rothe, based on the piecewise linear approximation, is compound from elements
um = us−1 + (t − ts−1)us for any t ∈ Is and s ∈ {1, 2, . . . , m}, where Is = {t ∈ I :
(s − 1)h < t ≤ sh}; for t = 0 naturally um = u0. Consequently, the sequence of
derivatives of um can be calculated directly from the formula u̇m = (us −us−1)/h for
each t ∈ Is. In particular, subtracting two equations (2.2) for w = us and w = us−1,
we have

h−1

∫

Ω

[α(us)us − α(us−1)us−1] · [β(us)us − β(us−1)us−1] dµ

+

∫

Ω

[α̂(us)∇us − α̂(us−1)∇us−1] · a(us)∇us dµ

=

∫

Ω

[α(us)us − α(us−1)us−1] · fs(us) dµ +

∫

Γ

[α(us)us − α(us−1)us−1] · gs(us) dσ .

Assuming the symmetry α̂(v)∇v · a(w)∇w = α̂(w)∇w · a(v)∇v for every v, w ∈ V
(which is satisfied e. g. for α̂ identical with a) and summing up with all indices s ∈
{1, . . . , r} for an arbitrary r ∈ {1, . . . , m}, we receive

h−1

∫

Ω

[α(ur)ur − α(ur−1)ur−1] · [β(ur)ur − β(ur−1)ur−1] dµ

+
1

2

∫

Ω

α̂(ur)∇ur · a(ur)∇ur dµ −
1

2

∫

Ω

α̂(u0)∇u0 · a(u0)∇u0 dµ

+
1

2

r∑

s=1

∫

Ω

[α̂(us)∇us − α̂(us−1)∇us−1] · [a(us)∇us − a(us−1)∇us−1] dµ

=

r∑

s=1

∫

Ω

[α(us)us − α(us−1)us−1] · fs(us) dµ

+

r∑

s=1

∫

Γ

[α(us)us − α(us−1)us−1] · gs(us) dσ .

To be able to guarantee a priori estimates for um in L2(I, V ) and for u̇m in
L2(I, L2(Ω, R2)) from this equation, we need some additional assumptions; in this
paper we shall demonstrate simple sufficient ones:

1. There exists such positive constant cb that

[α(v)v − α(w)w] · [β(v)v − β(w)w] ≥ cb(v − w) · (v − w) on Ω

for every v, w ∈ V . This is always true if α̂(v)T b(w) is a positive definite
matrix, since the Taylor expansions α(v)v − α(w)w = α̂(ṽ)(v − w), β(v)v −
β(w)w = b(w̃)(v − w) are valid with both ṽ and w̃ expressible in form (1 −
ζ)w + ζv with some real factors ζ between 0 and 1. Let us notice that also
|α(v)v − α(w)w| ≤ c|v − w| holds with some positive constant c, which is
useful for the right-hand-side estimate (except the surface integral).

2. There exists such positive constant ca that

α̂(v)∇v · a(v)∇v ≥ ca∇v · ∇v ,

[α̂(v)∇v − α̂(w)∇w] · [a(v)∇v − a(w)∇w] ≥ 0 on Ω

for every v, w ∈ V . In particular, the choice of α̂ identical with a makes these
conditions trivial: a(v)T a(v) should be a positive definite matrix only, which
is true for every regular a(v).
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3. There exist some positive constant cg and for any time t ∈ I such potential
G (cf. [3], p. 96) that

(α(v)v − α(w)w) · g(v) ≥ G(v) − G(w) , G(v) ≤ cg|v|
2 on Γ

for every v, w ∈ V . Moreover, the geometric configuration admits the estimate

‖v‖
2
L2(Γ,R2) ≤ θ‖∇v‖

2
L2(Ω,R2×2) + Kθ−1‖∇v‖

2
L2(Ω,R2)

with some positive constant K and any positive constant θ (this “trace theo-
rem” is analyzed in [14], p. 220). Let us remark that the notation v = α(v)v,
w = α(w)w can be sometimes helpful to reformulate the first condition as
(v − w) · g(v) ≥ G(v) − G(w) for a new function g(v) = g(v), too.

Applying the discrete version of the Gronwall lemma (see [6], p. 29), we are able
(after rather long calculations) to conclude that the sequence um(t) is bounded in V
for every t ∈ V and the sequence u̇m is bounded in L2(I, L2(Ω, R2)).

3. Illustrative example. Physically realistic matrices a, b usually do not admit
transparent analytical results for α, β. Nevertheless, we shall illustrate the applica-
bility of suggested transformations on one very simple example with α̂ = a. We shall
assume that g(v) does not depend on v ∈ V (thus an argument v can be omitted);
this yields G(v) = gv evidently.

Let ξ, η, δ, ε be such real factors that ξη < 4, δε < 4, ηε > −4. For arbitrary
v, w ∈ V let us consider

a(v) =

[
1 + (1 + v2

1)
−1 ξ(1 + v2

2)
−1

η(1 + v2
1)

−1 1 + (1 + v2
2)

−1

]
,

b(w) =

[
1 + (1 + w2

1)
−1 δ(1 + w2

2)
−1

ε(1 + w2
1)

−1 1 + (1 + w2
2)

−1

]
.

Using the notation κ(z) = (arctan z)/z for all non-zero values of z and κ(z) = 1 for
the opposite (singular) case, we can see that

α(v) =

[
1 + κ(v1) ξκ(v2)

ηκ(v1) 1 + κ(v2)

]
, β(w) =

[
1 + κ(w1) δκ(w2)

εκ(w1) 1 + κ(w2)

]
.

The positive definiteness of every matrix γ(v, w) = a(v)T b(w) is clear: from direct
calculations we obtain

γ11(v, w) =
(2 + v2

1)(2 + w2
1) + ηε

(1 + v2
1)(1 + w2

1)
, γ12(v, w) =

(2 + v2
1)δ + (2 + w2

2)η

(1 + v2
1)(1 + w2

2)
,

γ21(v, w) =
(2 + v2

2)ε + (2 + w2
1)ξ

(1 + v2
2)(1 + w2

1)
, γ22(v, w) =

(2 + v2
2)(2 + w2

2) + ξδ

(1 + v2
2)(1 + w2

2)

and consequently

det γ(v, w) = γ11(v, w)γ22(v, w) − γ12(v, w)γ21(v, w)

=
(2 + v2

1)(2 + v2
2) − ξη

(1 + v2
1)(1 + v2

2)
·
(2 + w2

1)(2 + w2
2) − δε

(1 + w2
1)(1 + w2

2)
,

which gives (since principal minors of γ(v, w) are positive) the expected result. The
regularity of a(v) can be verified similarly.
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4. Existence and convergence results, conclusions and generalizations.

To verify the solvability of (2.2) is relatively simple: it can be done in the same way
as in [19], applying the properties of generalized (pseudo)monotone operators from
[5]. The crucial point in the existence and convergence proof is just the verification
of the boundedness of sequences of Rothe. Following [19], where much more general
assumptions occur (a reflexive Banach space V , replacing our special subspace of
W 1,2(Ω, R2), whose mapping into an other Banach space H , substituted by L2(Ω, R2)
here, is strongly continuos, operators A : V 7→ V ?, B : H 7→ H? with prescribed
properties, etc.), making use of the reflexivity of V (W 1,2(Ω, R2), L2(Ω, R2) are even
Hilbert spaces) and certain modification of the Arzelà-Ascoli theorem (cf. [6], p. 24),
we find that such mapping u of I into V exists that for m → ∞, up to a subsequence,
{um(t)}∞m=1 has some weak limit u(t) in V for every t ∈ I , while u is a strong limit
of {um}∞m=1 in C(I, L2(Ω, R2)). The analogous analysis of behaviour of {um}∞m=1

yields, thanks to the reflexivity of L2(Ω, R2), the stronger result u ∈ L∞(I, V ) ∩
W 1,2(I, L2(Ω, R2)). Then it is not difficult to prove that such u satisfies (2.1) and
(1.2); (1.1) may be violated (mappings u are allowed not to be smooth enough) in
classical sense (if not understood in sense of distributions).

Presented results guarantee the existence of some solution and the convergence of
(sub)sequences of Rothe, using the discretization in time. For practical calculations,
the discretization in R2 is needed, too; this can be done using standard variational
methods as FEM, FDM, FVM, etc. It is possible to prove that, preserving some
rules for interpolation and numerical integration, the convergence properties of the
sequences of Rothe cannot be corrupted. Unfortunately, for the numerical modelling
of problems of heat and moisture transfer in building materials no standard soft-
ware seems to be available up to now. To justify theoretical results by numerical
experiments, several special PC programs have been written by the authors of [2] in
the Fortran and Pascal code; [2] includes also some recommendations, how to obtain
reasonable values (depending on u) of material characteristics from experiments in
laboratories (at the Faculty of Civil Engineering, University of Technology in Brno,
and the Institute of Physics of Materials, Academy of Sciences of the Czech Republic
in Brno); this is not easy due to the long-time redistribution of moisture in building
materials of common use. The complete development of the original software package
would be very expensive; this difficulty might be overcome with help of MATLAB
(PDE toolbox) and FEMLAB mathematical software.

Another (and more sophisticated) access comes out from more advanced analysis
of a material microstructure and generates a mathematical model, using an appropri-
ate homogenization technique. Unfortunately, both the structure of building materials
and all factors determining their insulation properties are typically complicated and
their better understanding requires more knowledge not only from physics, but also
from chemistry, biology, etc. (remember unintentional caves in concrete structures
and hibernating bats in panel houses). Thus, the more-scale convergence approach
with general measures, covering domains with holes and capillaries, discussed in [20],
cannot be applied directly – the main reason is that it involves no reliable mecha-
nism explaining, how pores of various shapes and sizes are filled in with liquid water,
vapour and ice (regardless of some considerations of this type in [2]). However, such
approach should contribute to better understanding and predicting of seemingly sur-
prising behaviour of structures and constructions in civil engineering in future.
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