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A FAST SOLVER FOR ELLIPTIC EQUATIONS WITH HARMONIC
COEFFICIENT APPROXIMATIONS∗

ELENA BRAVERMAN†, MOSHE ISRAELI‡ , AND ALEXANDER SHERMAN§

Abstract. Based on a fast subtractional spectral algorithm for the solution of the Poisson
equation, we develop a solver for elliptic equations with coefficient which are squares of harmonic
functions. A transformation suggested by P. Concus and G. H. Golub in SIAM J. Numer. Anal., Vol.
10 (Dec. 1973),1103-1120, results in a constant coefficient equation. If the square root of the coeffi-
cient is not harmonic, we approximate it by a harmonic function. Several correction steps are then
applied to achieve the required accuracy. The procedure is efficient if the harmonic function provides
a good approximation for the coefficient function. As the quality of the approximation depends in-
versely on the size of the domain, a hierarchical domain decomposition procedure is suggested which
improves the accuracy of the approximation.
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1. Introduction. Variable coefficient elliptic equations are ubiquitous in many
branches of scientific and engineering applications, the most important case being
that of the self-adjoint operator appearing in diffusion problems in nonuniform media.
Such problems also arise in the process of solution of variable coefficient and nonlinear
time dependent problems by implicit marching methods. One of traditional methods
to solve elliptic equations with nonconstant coefficients was to apply some iterative
procedure. A solver for the Poisson equation was usually employed as a preconditioner.
Thus a fast and accurate solver for a problem with constant coefficients became an
essential part of the numerical method.

Application of high-order (pseudo) spectral methods, which are based on global
expansions into orthogonal polynomials (Chebyshev or Legendre polynomials), to the
solution of elliptic equations, results in full (dense) matrix problems. The cost of
inverting a full N ×N matrix without using special properties is O(N 3) operations
[2]. The Fourier method for the solution of the Poisson equation in principle has an
exponential convergence but faces the Gibbs phenomenon for non-periodic boundary
conditions. Among recent development in the resolution of the Gibbs phenomenon
let us mention papers [4, 5, 8] and references therein and [1, 7] for recently developed
fast solvers based on the Fourier method and Fast Fourier Transform.

The methods to resolve the Gibbs phenomenon are described in [4] (see also ref-
erences to this review article). They can be classified as Fourier space filters and
methods concerned with an adjustment in a physical space. For the solution of the
Poisson equation with Fourier series we have to restore a solution rather than the
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original right hand side (RHS) which is presented in the Fourier space. Since the
accuracy of the solution degrades due to the Gibbs phenomenon in the RHS represen-
tations, then the algorithm can benefit if the RHS is presented as a sum of a smooth
periodic function and another function which can be integrated analytically. Rather
simple for 1D problems, the implementation of this idea becomes more complicated
for higher dimensions. This procedure is called sometimes the subtraction technique
(a function which is later integrated analytically is subtracted from the RHS).

To the best of our knowledge the application of the subtraction technique in
the resolution of the Gibbs phenomenon for the Fourier series solution goes back
to Sköllermo [9], where a modification of the Fourier method was developed for the
Poisson equation

∆u = f(1)

in the rectangle [0, 1]× [0, 1] with periodic boundary conditions. It is to be noted that
the subtraction algorithm in [9] was developed for some specific boundary conditions
only.

We apply the Poisson solver [1] in a rectangular domain with an equispaced
grid. Then the subtraction technique (in the physical space) should be used for the
resolution of the Gibbs phenomenon rather than other methods due to the following
reasons.

a) After subtraction, Fast Fourier Transform can be applied to the remaining
part of RHS with high convergence.

b) The algorithm keeps the diagonal representation of the Laplace operator, so,
unlike Chebyshev and Legendre expansions, it is not necessary to find an
inverse of a full matrix.

c) Generally, the computation of the subtraction functions is even less time
consuming than FFT implementation.

The solver developed in [1] is fast (O(N 2 logN), where N is a number of points in each
direction). It is also applied to solve an elliptic equation with nonconstant coefficients

Lu = ∇ · a(x, y) (∇u(x, y)) = f(2)

with the preconditioned iterations

L0u
n+1 = f − (L − L0)un,(3)

where L0u = f is the Poisson equation with a constant coefficient which is equal to
the average of the maximal and the minimal values of function a(x, y) in the domain.
However for convergence to the accuracy provided by our basic solver sometimes a
significant number of iterations (above 30) is necessary. In the framework of the
present paper:

1. We develop a fast direct algorithm for the solution of Eq.(2) for any function
a(x, y), such that

√
a(x, y) is harmonic. It is based on the fast direct solver

developed in [1] and a transformation described in [3]. This already involves
a wide class of equations with nonconstant coefficients.

2. If
√
a(x, y) is not harmonic, we approximate it by a harmonic function. The

numerical scheme incorporates the basic algorithm with some correction steps
are required (the procedure is described in Section 2 and tested numerically
in Section 3).

3. An adaptive domain decomposition approach is suggested in order to improve
the approximation for any function a(x, y).
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2. Outline of the algorithm. We solve an elliptic equation

∇ · (a(x, y) ∇u(x, y)) = f(x, y), (x, y) ∈ D,(4)

where D is a rectangular subdomain, with the Dirichlet boundary conditions

u(x, y) = g(x, y), (x, y) ∈ ∂D.(5)

We assume a(x, y) > 0 for any (x, y) ∈ D.
Following [3] we make the change of variable

w(x, y) =
√
a(x, y)u(x, y),(6)

then Eq. (4) takes the form

∆w − p(x, y)w = q(x, y),(7)

where

p(x, y) =
∆(
√
a(x, y) )√
a(x, y)

, q(x, y) =
f(x, y)√
a(x, y)

.(8)

In case
√
a(x, y) is a harmonic function, Eq.(7) becomes the Poisson equation in w:

∆w = q(x, y)(9)

This leads to the fast direct algorithm for the numerical solution of Eq.(4), where√
a(x, y) is a harmonic function.

Algorithm A
1. Using the modified spectral subtractional algorithm which was described in the

introduction, we solve Eq.(9) with the boundary conditions

g̃(x, y) =
√
a(x, y)g(x, y).

2. The solution of Eq.(4) is u(x, y) =
w(x, y)√
a(x, y)

.

This algorithm enables the solution of

∇ · (ã(x, y) ∇u) = f(x, y), where ∆
(√

ã(x, y)
)

= 0 for any (x, y) ∈ D,(10)

as a constant coefficient problem with the boundary conditions (5).
Let us now consider the case when

√
a(x, y) is not exactly harmonic but can be

well approximated by a harmonic function
√
ã(x, y). This means that the difference

ε(x, y) = a(x, y)− ã(x, y)(11)

is small. Denote by u0(x, y) the solution of (10) with boundary conditions (5) and
introduce ũ(x, y) = u(x, y) − u0(x, y), where u(x, y) is an exact solution of Eq.(4).
Then (4) can be rewritten as

∇ · [(ã(x, y) + ε(x, y)) ∇(u0 + ũ)] = f(x, y).(12)
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Taking into account (10), we obtain

∇ · (ã(x, y) ∇ũ) = −∇ · [ε(x, y) ∇(u0 + ũ)] ,(13)

where ũ(x, y) satisfies the zero boundary conditions as the difference of two func-
tions u(x, y) and u0(x, y), which both satisfy (5). Since ũ is unknown, the following
correction procedure is suggested:

∇ · (ã(x, y) ∇u1) = −∇ · [ε(x, y) ∇u0](14)

∇ · (ã(x, y) ∇un+1) = −∇ · [ε(x, y) ∇(u0 + un)] , n ≥ 1.(15)

Subtracting (13) from (15) we have

∇ · [ã(x, y) ∇(un+1 − ũ)] = −∇ · [ε(x, y) ∇(un − ũ)](16)

For example, if ‖ε‖ ≤ s‖a‖ in some norm, where s is small, then ‖un+1 − ũ‖ ≤
s‖un − ũ‖. The corrected solution un after n correction steps is un = u0 + un. Since
the exact solution is u = u0 + ũ, then the error decreases according to:

‖un+1 − u‖ ≤ s‖un − u‖(17)

Thus the algorithm for the solution of (4) can be described as follows.

Algorithm B
1. The coefficient a(x, y) in (4) is approximated by ã(x, y) such that

√
ã(x, y) is a

harmonic function in the domain D. Equation (10) is solved using Algorithm
A.

2. Some correction steps are made using (15) until the desired accuracy is attained.
Here we leave aside the problem how

√
a(x, y) is best approximated by a harmonic

function. The simplest approach considers a function b(x, y) in the square [0, 1]× [0, 1]
it can be approximated by the bilinear function

b̃(x, y) = c11 + c12x+ c21y + c22xy,(18)

which takes on the corner values of b(x, y) i.e.:

c11 = b(0, 0), c12 = b(1, 0)− b(0, 0),

c22 = b(0, 1)− b(0, 0),c22 = b(1, 1) + b(0, 0)− b(1, 0)− b(0, 1).(19)

This approximation can be improved by matching more points on the boundary of
the square [0, 1]× [0, 1] by the addition of functions of the type

ϕ(x, y) = dk sin(πkx) sinh(πky)(20)

which do not influence corner points. Dividing the domain to smaller squares improves
the error according to the square of the size of the subdomain.

We could try to find the best approximation of
√
a(x, y) by least squares in a class

of harmonic functions. However the simplest approximation with bilinear functions
(18),(19) has the following advantage: if we use domain decomposition(see Section
4), then the collection of ã(x, y) approximated in subdomains is not smooth but is
a continuous function, this simplifies very much the inter domain matching process.
This is true also for (20). All other approximations involving interior values do not
enjoy this beneficial property.
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Table 1
MAX, MSQ and L2 errors for the exact solution u(x, y) = (x+ 1)2 + (y + 0.5)2 and a(x, y) =

(x+ 1)2(y + 0.5)2 in the domain [0, 1]× [0, 1].

Nx ×Ny εMAX εMSQ εL2

8× 8 3.2e-5 2.0e-5 5.3e-6
16× 16 2.0e-6 1.3e-6 2.7e-8
32× 32 1.3e-7 2.7e-8 2.4e-8
64× 64 7.9e-9 5.6e-9 1.6e-9

128× 128 5.0e-10 3.5e-10 9.8e-11

Table 2
MAX, MSQ and L2 errors for the exact solution u(x, y) = (x+ 1)2 + (y + 0.5)2 and a(x, y) =

(x+ 1 + 0.1 sinx)2(y + 0.5)2 in the domain [0, 1]× [0, 1].

Nx ×Ny εMAX εMSQ εL2

8× 8 3.4e-5 2.0e-5 5.5e-6
16× 16 2.2e-6 1.4e-6 3.8e-8
32× 32 1.4e-7 8.9e-8 2.5e-8
64× 64 8.6e-9 5.7e-9 1.6e-9

128× 128 4.7e-10 3.6e-10 1.0e-10

3. Numerical results. First let us demonstrate the rate of convergence of the
algorithm with the growth of the number of grid points in the case where the coefficient
a(x, y) is a square of a harmonic function.

Assume that u is the exact solution of Eq.(4) and u′ is the computed solution.
We will use the following measures to estimate the errors:

εMAX = max |u′i − ui|

εMSQ =

√∑
N

i=1
(u′
i
−ui)2

N

εL2 =

√∑
N

i=1
(u′
i
−ui)2

∑
N

i=1
u2
i

Example 1. Consider the equation with a(x, y) = (x + 1)2(y + 0.5)2, the right
hand side and the boundary conditions correspond to the exact solution u(x, y) =
(x+ 1)2 + (y + 0.5)2. The results are presented in Table 1.

Now let us proceed to an example, where
√
a is not harmonic.

Example 2. Consider the equation with a(x, y) = (x + 1 + r sinx)2(y + 0.5)2, the
right hand side and the boundary conditions correspond to the same exact solution
as in Example 2. Here we need to apply some correction steps in order to get desired
accuracy. We used (18),(19) for the approximation of

√
a by a harmonic function.

The results for α = 0.1 are presented in Table 2.
If we insist to get the same (excessive) accuracy as in the previous example, it is

necessary to apply from 2 correction steps for 32× 32 points to 6 steps for 128× 128
points. It is expected that with the growth of r more corrections steps are required.
Let us consider r = 0.5. Fig. 1 describes the convergence of the maximal error for
r = 0.5 with the growth of the number of correction steps. Here 32× 32 grid points
were used.

The number of correction steps which is necessary to achieve the prescribed accu-
racy grows as the difference between the harmonic approximation of

√
a and its real
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Fig. 1. The maximal error for various number of correction steps for the coefficient a(x, y) =
(x+ 1 + 0.5 sinx)2(y + 0.5) and 32× 32 grid points

value increases. Fig. 2 presents the dependency of the number of correction steps
which are necessary to get the accuracy of 3e-7, on the parameter r in the coefficient
a(x, y) = (x+ 1 + r sinx)2(y + 0.5).

4. Summary and discussion. The present algorithm incorporates the follow-
ing novel elements:

1. It extends our previous fast Poisson solvers [1, 7] as it provides an essentially
direct solution for equations (4) where

√
a(x, y) is an arbitrary harmonic

function, in particular, a bilinear function

√
a = c11 + c12x+ c21y + c22xy.

2. In the case where
√
a(x, y) is not harmonic, we approximate it by

√
ã(x, y)

and apply some correction steps to improve the accuracy. If ã(x, y) is chosen
to be a constant we obtain an iteration procedure with a constant coefficient
solver as a preconditioner (for details, see [1]).

However high accuracy for the solution of (4) requires an accurate approximation
of
√
a by a harmonic function. Such an approximation is not always easy to derive

in the global domain, however it can be achieved in smaller subdomains. In this case
we suggest the following Domain Decomposition algorithm.

1. The domain is decomposed into smaller rectangular subdomains. Where the
boundary of the subdomains coincides with full domain boundary we take on
the original boundary conditions. For other interfaces we introduce some ini-
tial boundary conditions which do not contradict the equation at the corners,
where the left hand side of (4) can be computed. The function a is approx-
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Fig. 2. The number of correction steps necessary to attain the accuracy of 3e-7 for the coefficient
a(x, y) = (x+ 1 + r sin x)2(y + 0.5) and 32× 32 grid points

imated by ã in each subdomain such that
√
ã is harmonic. An auxiliary

equation (10) is solved in each subdomain.
2. The collection of solutions obtained at Step 1 is continuous but has noncon-

tinuous derivatives at domain interfaces. To further match subdomains, a
hierarchical procedure can be applied similar to the one described in [6]. For
example, if we have four subdomains 1,2,3 and 4, then 1 can be matched with
2, 3 with 4, while at the final step the merged domain 1,2 is matched with
3,4.
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