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HYBRID SCHEMES FOR EULER EQUATIONS IN LAGRANGIAN

COORDINATES ∗

PAVEL BUREŠ AND RICHARD LISKA.

Abstract. Many fluid dynamics problems modeled by Euler equations involve large changes of
volume or size of computational domain or moving boundaries and thus have to be treated in moving
Lagrangian coordinates. Composite schemes are defined by global composition of Lax-Wendroff (LW)
and Lax-Friedrichs (LF) schemes. The hybrid methods extend composite schemes in the way, that
the combination of the LW and LF scheme is done locally in the form of an affine combination of
its numerical fluxes with a local shock switch which guarantees second order accuracy on smooth
solutions. Hybrid schemes are developed in 1D and 2D. Numerical results of several test problems
are presented.
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1. Introduction. Many hydrodynamical problems described by the Euler equa-
tions involve large dynamical changes of computational area or moving boundaries and
cannot be treated on static Eulerian computational mesh. Typical problems of this
kind coming from laser plasma physics are corona expansion or target compression.
Such problems have to be treated in Lagrangian coordinates on computational mesh
moving with the fluid. Standard numerical methods for Euler equations in Lagrangian
coordinates [10] discretize scalar quantities (density, internal energy and pressure) in
cells and velocities in nodes. For treating shock waves appearing in the solution of
Euler equations these methods employ artificial viscosity. The choice of the artificial
viscosity is however quite a difficult issue [2]. Artificial viscosity is a term that is
smoothing solution in the areas of discontinuities. Another approach, used in this
work, is using hybrid scheme, by combining convenient numerical schemes. Two well
known schemes are used in this paper, the Lax-Wendroff (LW) and the Lax-Friedrichs
(LF) scheme. The first one is dispersive scheme, suffering from oscillations at discon-
tinuities. The second one is a diffusive scheme, smoothing solution at discontinuities.
The composite schemes [8, 11, 7] are a global composition of several steps of LW
scheme followed by one step of the LF scheme. The diffusion is added by the LF
scheme in the whole computational domain and the composite schemes remain only
first order accurate as the LF scheme. Hybrid schemes investigated in this paper
use an affine combination of the LW and LF numerical fluxes. The affine switch is
designed in such a way that in regions of smooth solution only the LW numerical
flux is used while the diffusive LF flux is used around discontinuities. In such a way
hybrid schemes remain second order accurate on smooth solutions. Hybrid schemes
have been originally developed on static Eulerian mesh with different switches [5, 4, 9].
Here we extend these ideas to Lagrangian formulation on computational mesh moving
with the fluid.

The Euler equations express the conservation of the mass, momentum and total
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84 PAVEL BUREŠ, RICHARD LISKA

energy. The equations written in Lagrangian coordinates are

ρ
d~ω

dt
+ ∇~x

~f = 0 , ~ω =





η
~v
E



 , ~f =





~v
−pI
−p~v



 (1.1)

where η = 1/ρ is specific volume, ρ is density, ~v is the velocity of the fluid, E is mass
density of the total energy, p = p(ρ, e) is the pressure that is given by a state equation
of fluid and I is the unit vector of the same dimension as the velocity. The equation
of state for polytropic ideal gas p = (γ − 1) e

ρ is used. The movement of Lagrangian

coordinates is controlled by the ordinary differential equation d~x/dt = ~v which after
discretization describe the movement of the computational mesh. The computational
mesh is moving with the fluid, so the mass of computational cells remains constant.
This basic Lagrangian assumption is often used for evaluation of density from the
movement of the mesh.

2. Lax-Wendroff and Lax-Friedrichs schemes in 1D. Lax-Wendroff (LW)
[6] and Lax-Friedrichs (LF) [3] are classical schemes for conservation laws. We use
them in their two step form. The computational mesh is presented in Fig. 2.1 showing
primary and dual cells. Vertices of the primary cells are drawn by full circles and
denoted by indices k. Vertices of the dual mesh are drawn by empty circles, denoted
by index z. Primary cells are denoted by indices z and dual cells are denoted by
indices k. Centers of cells, i.e. positions of vertices of dual cells, are computed as
Xz = 1

2 (Xk + Xk+1), Xk are the positions of primary vertices k. Mz denotes the
mass of primary cell z and Mk mass of vertex k, i.e. the mass of dual cell k. All
quantities are cell centered, i.e. defined inside the cell. The mass of primary cell Mz

remains constant. The LF scheme in its two step form consists of a predictor and
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k k+1

z z+1z-1

n

Dual computational cell

Primary computational cell

Fig. 2.1. Primary an dual cells, values discretized in cells.

corrector step, where the predictor step, computing the values on time level n + 1/2
in the dual cell k has the form

ω
n+1/2
k =

Mz−1ω
n
z−1 + Mzω

n
z

Mz−1 + Mz
+

∆t

Mz−1 + Mz

(

fn
z − fn

z−1

)

. (2.1)

The upper index of the terms ω and f denotes the time level. The corrector of the
LF scheme computing values on time level n + 1 using values on time level n + 1/2 is

ωn+1
z =

ω
n+1/2
k + ω

n+1/2
k+1

2
+

∆t

2Mz

(

f
n+1/2
k+1 − f

n+1/2
k

)

. (2.2)

The LF scheme is diffusive and first order accurate. Its diffusion smears considerable
the discontinuities.
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The LW scheme in its two step form has the predictor identical to the predictor
of the LF scheme (2.1). The LW corrector is

ωn+1
z = ωn

z +
∆t

Mz

(

f
n+1/2
k+1 − f

n+1/2
k

)

. (2.3)

The LW scheme is dispersive and second order accurate. The dispersion produces
oscillations behind discontinuities.

The schemes are developed on the mesh which is moving with the fluid. The
coordinates of primary nodes are not independent variables and are computed by
using Euler method to solve the above mentioned ordinary differential equation in
each node Xn+1

k = Xn
k + ∆tvk, where using chosen discretization the velocity vk can

be velocity on time level n+1/2 or some linear interpolation of velocities on time levels
n, n + 1/2 and n + 1. After moving the mesh, density as a function of the volume
and the mass of the cells is computed ρz = Mz/(Xk+1 − Xk) so, that the density
corresponds exactly to the mesh motion. Other components of ω are evaluated from
the scheme (2.1), (2.2), and (2.3).

3. Hybrid schemes in 1D. The LF scheme is of the first order of accuracy and
is excessively diffusive, while the LW scheme, although it is second order accurate,
suffers from nonphysical oscillations, that appear behind the shocks. One approach
how to deal with these undesirable properties is to use the so called composite LWLFn
scheme. The idea of the composite LWLFn scheme is to use (n − 1) steps of the LW
scheme and once use the LF scheme as a consistent filter suppressing the LW oscilla-
tions. By using one step of the LF scheme, so called numerical diffusion is introduced
into the computations [8]. For the composite schemes in Lagrangian coordinates see
[11, 7]. Although the composite schemes work reasonably well, they include the first
order numerical diffusion even in the areas of smooth solution and remain only first
order accurate even on the smooth solution. The idea of hybrid schemes is to conve-
niently mix the LW and LF schemes locally in each cell and to introduce the numerical
diffusion from the LF scheme only in the areas of discontinuity and to use only the
second order LW scheme in smooth regions [5, 4, 9].

Both schemes can be written in the so called conservative form, when the value
on the next time level (n + 1) is expressed by the one-step form of the scheme as an
addition of a difference of numerical fluxes over the edges of the cell z to the value on
the time level n. The conservative form of each scheme S, S ∈ {LW, LF} is

Mzω
n+1
z = Mzω

n
z + F

(S)
k+1 − F

(S)
k , (3.1)

The hybrid scheme combines the numerical flux F (S) of the LW and LF scheme locally.
For each node the affine combination of both fluxes given by parameter αk ∈ 〈0, 1〉

F
(H)
k = αkF

(LF )
k + (1 − αk)F

(LW )
k , (3.2)

is used as the numerical flux of the hybrid scheme

Mzω
n+1
z = Mzω

n
z + F

(H)
k+1 − F

(H)
k .

The parameter αk is a shock switch which should be close to one near discontinuous
solution and close to zero in smooth regions. This means, that the switch is switching
to the LF numerical fluxes and thus computational diffusion is added when discon-
tinuity appears and in the areas with smooth solution, the flux of the LW scheme is
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used. The shock switches due to Harten-Zwas [5], Harten [4], MacCormack-Baldwin
[9] and Wendroff switch [1] have been modified for the non equidistant mesh.

The form (3.1) can be obtained by substituting the predictor terms into the
corrector of the corresponding scheme and splitting the terms so that they form the

numerical fluxes F
(S)
k+1. Our requirement on the numerical flux over the edge k + 1

is, that the form Fk+1 has to be antisymmetric with respect to edge k + 1. It means
that when computing value ωz, we have to add to this value the same flux Fk+1 as
we subtract from the value in cell z + 1.

The numerical fluxes of the LF scheme can be derived as

F
(LF )
k =

1

2

[

MzMz−1

(

ωn
z − ωn

z−1

)

Mz + Mz−1
+ ∆t

Mz−1fz

Mz + Mz−1
+ ∆t

Mzfz−1

Mz + Mz−1
+ ∆tfk

]

.

The LW corrector (2.3) is already in the conservative form and the LW numerical

fluxes are F
(LW )
k = ∆tf

n+1/2
k .

4. Lax-Wendroff and Lax-Friedrichs schemes in 2D. In 2D we use the
quadrilateral mesh displayed in Fig. 4.1. Primary cells of the computational mesh
are denoted by the pair of indices (i, j) and vertices by (i + 1/2, j + 1/2). The values
ωn

(i,j), and f(ωn
(i,j)) denoted as fn

(i,j) are discretized in the primary cells drawn by
solid lines. The mass M(i,j) of the primary cells is constant. Dual values at time
level n + 1/2 computed by the predictor are discretized in the dual cells, drawn by
dashed lines. The dual cell’s boundaries are created by connecting the centers of
edges of primary cells with the primary cells centers, so that dual cells are 8-laterals.
Dual edges divide each primary cell into four subzones which are denoted locally by
(1) . . . (4) counterclockwise starting by lower left subzone as shown in Fig. 4.1. The
center of the primary cell is given by the average of its four vertices.

For periodicity in the local denotation (e.g. subzone (5) is subzone (1) or (−1)
corresponds to (4)) we introduce the function rot : N → {1 . . .4} as

rot(n) =







(n) if 0 < n ≤ 4
rot(n + 4) if n ≤ 0
rot(n − 4) if n > 4

The vectors ~s(1) . . . ~s(4) are the normals to the abscissas connecting the center of
primary cell and center of primary edge. Norms of those vectors are equal to lengths of
these abscissas. The vector ~s(n) is normal of abscissa between subzone (n) and rot(n+
1). The vectors ~a(1) . . .~a(4) are the normals to the edges of primary cell with size being
equal to the length of the primary edge. Vectors are numbered counterclockwise, and
~a(1) is the normal to the bottom edge of the cell as shown in Fig. 4.1.

For shortening the formulas we define local shifting operators P1 . . . P4

P1(i, j) = (i − 1/2, j − 1/2) P2(i, j) = (i + 1/2, j − 1/2)
P3(i, j) = (i + 1/2, j + 1/2) P4(i, j) = (i − 1/2, j + 1/2).

The 2D LF predictor (which is 2D analog of 1D predictor (2.1)) is given by

ωn+1/2
a =

1

4Ma

4
∑

k=1

MPk(a)ωPk(a) +
∆t

2Ma

4
∑

k=1

~fn
Pk(a)

~S
rot(k+2)
Pk(a) , (4.1)
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Fig. 4.1. Quadrilateral mesh

where the index a denotes any dual cell (i + 1/2, j + 1/2). The LF corrector is

ωn+1
b =

1

4

4
∑

k=1

ω
n+1/2
Pk(b) +

∆t

2Mb

4
∑

k=1

~f
n+1/2
Pk(b)

~A
(k)
Pk(b)

~A(n) =
1

2

(

~a(n) + ~arot(n−1)
)

, ~S(n) =
(

~s(n) − ~srot(n−1)
)

,

(4.2)

where the index b denotes any primary cell (i, j). The predictor of the LW scheme is
the same as the LF predictor. The corrector of LW scheme can be written as

ωn+1
b = ωn

b +
∆t

Mb

4
∑

k=1

~f
n+1/2
b

~A
(k)
Pk(b) (4.3)

After computing of values on the time level n + 1, the new positions of the primary

vertices have to be computed. For the mesh movement, we use the velocities ~v
n+1/2
a

obtained by the predictor. The positions of the primary vertices at time level n + 1

are evaluated by ~Xn+1
a = ~Xn

a + ∆t~v
n+1/2
a . The density of cells is computed from the

mesh movement as ρn+1
b = V n+1

b /Mb, where V n+1
b is the volume of the cell b, while

the other components of ω are obtained from the schemes (4.1)-(4.3).

5. Hybrid schemes in 2D. For hybrid method both LF and LW schemes have
to be written in the conservative form

Mi,jωi,j
n+1 = Mi,jωi,j

n + Fi+1/2,j − Fi−1/2,j + Fi,j+1/2 − Fi,j−1/2, (5.1)

however to simplify the notation we work with the numerical fluxes F defined locally
in the cell (i, j) for which

Mi,jωi,j
n+1 = Mi,jωi,j

n + Fi+1/2,j + Fi,j+1/2 + Fi−1/2,j + Fi,j−1/2.

To obtain the LF scheme in its conservative form, the predictor (4.1) has to be sub-
stituted into the corrector (4.2). The derivation of the flux form is quite complicated,
here we present only the results, the detailed description can be found in [1].
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The numerical flux of the LF scheme splits into three parts

Fi+1/2,j = Fω
i+1/2,j + Ff

i+1/2,j + Fff
i+1/2,j ,

Fi,j+1/2 = Fω
i,j+1/2 + Ff

i,j+1/2 + Fff
i,j+1/2,

where Fω, Ff and Fff are symbols for summation of terms containing ωn, fn =
f(ωn) and fn+1/2 = f(ωn+1/2), respectively, given by

Fω
(i+1/2,j) =

∑

k∈{−1,1}

Q
[(i,j+k),(i+1,j)]
(i+1/2,j+k/2) + Q

[(i,j),(i+1,j+k)]
(i+1/2,j+k/2) + 2Q

[(i,j),(i+1,j)]
(i+1/2,j+k/2)

Fω
(i,j+1/2) =

∑

k∈{−1,1}

Q
[(i+k,j),(i,j+1)]
(i+k/2,j+1/2) + Q

[(i,j),(i+k,j+1)]
(i+k/2,j+1/2) + 2Q

[(i,j),(i,j+1)]
(i+k/2,j+1/2)

Ff
i+1/2,j =

∑

k∈{−1,1}

R
[(i,j+k),(i+1,j)]
(i+1/2,j+k/2) + R

[(i,j),(i+1,j+k)]
(i+1/2,j+k/2) + 2R

[(i,j),(i+1,j)]
(i+1/2,j+k/2)

Ff
i,j+1/2 =

∑

k∈{−1,1}

R
[(i+k,j),(i,j+1)]
(i+k/2,j+1/2) + R

[(i,j),(i+k,j+1)]
(i+k/2,j+1/2) + 2R

[(i,j),(i,j+1)]
(i+k/2,j+1/2)

Fff
i+1/2,j =

∆t

4

(

~f(i+1/2,j−1/2) · ~A
(2)
(i,j) + ~f(i+1/2,j+1/2) · ~A

(3)
(i,j)

)

Fff
i,j+1/2 =

∆t

4

(

~f(i+1/2,j+1/2) · ~A
(3)
(i,j) + ~f(i−1/2,j+1/2) · ~A

(4)
(i,j)

)

,

where the forms Q and R are defined as

Q
[A,B]
d =

MAMB (ωB − ωA)

32Md
,

R
[A,B]
d =

MA
~fB · ~S

(n1)
B − MB

~fA · ~S
(n2)
A

16Md
,

where the superscripts of Q or R are the primary vertices and the subscript denotes
the dual cell. The values n1 and n2 are not necessary to write, as they are uniquely
determined by the arguments of R. The terms F are defined locally with respect to
the cell (i, j), to keep the global definition of numerical fluxes (5.1), we define

F
(LF )
i+1/2,j = Fi+1/2,j , F

(LF )
i−1/2,j = −Fi−1/2,j

F
(LF )
i,j+1/2 = Fi,j+1/2, F

(LF )
i,j−1/2 = −Fi,j−1/2.

For the Lax-Wendroff scheme, the flux decomposition can be found easily from (4.3),

F
(LW )
i+1/2,j =

∆t

2
~a

(2)
(i,j) ·

(

~f(i+1/2,j−1/2) + ~f(i+1/2,j+1/2)

)

,

F
(LW )
i−1/2,j = −

∆t

2
~a

(4)
(i,j) ·

(

~f(i−1/2,j+1/2) + ~f(i−1/2,j−1/2)

)

,

F
(LW )
i,j+1/2 =

∆t

2
~a

(3)
(i,j) ·

(

~f(i+1/2,j+1/2) + ~f(i−1/2,j+1/2)

)

,

F
(LW )
i,j−1/2 = −

∆t

2
~a

(1)
(i,j) ·

(

~f(i−1/2,j−1/2) + ~f(i+1/2,j−1/2)

)

.

In 2D the shock switch is defined on each primary edge and the above numerical
LF and LW fluxes are combined on each primary edge analogously as in (3.2) to obtain
hybrid numerical fluxes.
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6. Numerical results. The set of 1D Riemann problems described in Tab. 6.1
has been computed by different hybrid methods. The relative error

L1 =

∫

V

|ρ(num) − ρ(ex)|/

∫

V

|ρ(ex)|

of numerical solution is presented in Tab. 6.2. The value ρ(ex) is the exact solution
of Riemann problem and ρ(num) is the numerical solution. The results are compared
with the solution using shock switch α = 0.2 everywhere which is equivalent to the
composite scheme LWLF5. The Fig. 6.1 presents results for the Riemann problem 4

Name ρL uL pL ρR uR pR x0 T

1 1 0.75 1 0.125 0 0.1 0.3 0.2

2 1 -2 0.4 1 2 0.4 0.5 0.15

3 1 -19.59745 1000 1 19.59745 0.01 0.8 0.012

4 5.99924 19.5975 460.894 5.999242 -6.19633 46.095 0.4 0.035

5 1.4 0 1 1 0 1 0.5 2

6 1.4 0.1 1 1 0.1 1 0.5 2

Noh 1 1 10−6 1 -1 10−6 0.5 1

Table 6.1

Initial conditions for 1D Riemann problems. The gas state values on the left side of the point
x0 are ρL, uL, and pL, and on the right side of the x0 are ρR, uL and pR. The problem is computed
till time T .

α = 0.2 Harten-Zwas Harten MacCormack-Baldwin Wendroff
1 0.56 0.49 0.58 0.52 0.51
2 0.48 1.32 0.31 0.33 1.06
3 1.64 1.55 1.32 1.14 1.99
4 1.14 0.45 0.58 0.55 0.67
5 0.39 0.63 0.11 0.08 0.13
6 0.39 0.63 0.11 0.08 0.13
Noh 0.44 0.44 0.38 0.42 0.56

Table 6.2

Relative L1 error in % for Riemann problems defined in Tab. 6.1.

computed by constant switch α = 0.2 and MacCormack-Baldwin switch. The problem
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0
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
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50

(a) (b)

Fig. 6.1. Density for 1D Riemann problem 4 by (a):constant switch set to 0.2 (relative L1 error
is 2.3%) and (b): MacCormack-Baldwin switch (relative L1 error is 1.4%). 200 cells.

with a smooth solution without a presence of discontinuities has been used to test
the ability of the shock switches to detect a smooth solution and thus to use the
LW scheme in these areas. Initial condition of the problem is ρ = 1 + 0.2 sin(πx),
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v = 1 and p = 1. The solution of this problem in time t is the density profile of
ρ(t) = 1 + 0.2 sin (π(x − tv)), other values are not changed. The problem has been
computed till time t = 2.5. In Tab. 6.3 the convergence of composite and hybrid
scheme is presented. The composite scheme is only first order while the hybrid scheme
remains second order accurate.

Number of cells 50 100 200 400 800
composite L1 error [%] 3.2922 1.3717 0.6260 0.2997 0.1471
α = 0.2 log2 1.26 1.13 1.06 1.03 -
MacCormack- L1 error [%] 0.0952 0.0263 0.0069 0.0017 0.0004
Baldwin switch log2 1.86 1.94 1.98 1.99 -

Table 6.3

Convergence test of the smooth problem for composite and hybrid scheme.

The Noh implosion problem with known exact solution was treated in 2D. The
test simulates cylindrical implosion of a perfect gas with γ = 5/3, initial pressure is
set to zero, density is equal to one, and velocity of magnitude equal to one with inward
radial direction is set. Circular shock wave is generated at the center of convergence.
Shock wave speed is equal to 1/3. Behind the shock i.e. inside the circle, density is
16, the velocity is equal to zero and pressure p = 16/3. Ahead of shock wave, the
gas is compressed because of convergence, which produces a density profile equal to
ρOUT = 1 + t/

√

(x2 + y2), t is time, pressure and velocity remain the same as in
initial conditions. Cartesian mesh with 50× 50 cells is used on upper right quadrant,
symmetry boundary conditions are employed along the x and y axes. In Fig. 6.2
comparison of composite scheme LWLF5 and hybrid scheme with Harten-Zwas switch
is presented. Decrease of overshoot on the head of shock by presence of the viscous
term from the LF scheme is significant. In contrary, the computational mesh is more
deformed when hybrid scheme is used.

Dukowicz problem is a two dimensional shock refraction problem. A vortex sheet
is generated by the interaction of a shock with an inclined interface, and the mesh is
uneven. The problem takes two adjacent regions of gas with different densities, with
interface aligned at 30◦ to the horizontal. Gas with pressure p = 1, ~v = ~0 and γ = 1.4
is considered. Initial mesh is presented in Fig. 6.3. Mesh is created by 100 × 50
cells. First 50 columns in mesh covers left region of a computational domain with the
density equal to one, next 50 columns cover the second region with ρ2 = 1.5. A piston
moves from the left with velocity 1.48, sending a shock ahead of it. Problem is run
till the time t = 1.3. Comparison of uniformly set switch α = 0.2 and MacCormack-
Baldwin switch is presented in Fig. 6.4. The boundaries of transmitted shock wave
are sharper for hybrid method however some oscillations appear.

7. Conclusion. Hybrid methods for treating Euler equations in Lagrangian co-
ordinates on a moving computational mesh have been developed and tested. In com-
parison to the composite LWLFn methods, the hybrid methods give generally com-
parable or better results. Hybrid methods are second order accurate while composite
only first order. The disadvantage of the hybrid methods is, that the choice of con-
venient shock switch and its parameters is not straightforward and might need some
tuning. The consequence of the local combination of two schemes is, that the com-
putational mesh mostly suffers from bigger distortions than the composite LWLFn
methods.
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Fig. 6.2. Computational mesh and radial scatter plot profiles of density for 2D Noh problem
at time t = 1, computed (a) by composite scheme LWLF5 (relative L1 error is 3.8%), (b) by hybrid
method using Harten-Zwas switch (relative L1 error is 3.1%). Exact solution is displayed by the
solid line.
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Fig. 6.3. Initial mesh configuration for Dukowicz problem.
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(a) (b)

Fig. 6.4. Density of Dukowicz problem solution. (a): scheme computed by switch uniformly
set to α = 0.2, (b): MacCormack-Baldwin shock switch.
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