
Proceedings of ALGORITMY 2005
pp. 194–201

LOCAL QUADRATIC APPROXIMATION IN VERTICES OF
PLANAR TRIANGULATIONS∗

JOSEF DALÍK†

Abstract. For every strongly regular triangulation Th in 2D, we describe a class of local sets
of vertices in which the least–squares approximations of smooth functions by quadratic polynomials
are of optimal order. As an application of this result, we prove that for any inner vertex a with affine
neighbourhood b1, . . . , b6, the least–squares quadratic approximation Q of any smooth function u
in the points b1, . . . , b6, a has the following relation to the globally continuous and piecewise linear
projection Πu of u. The gradient gradQ(a) is equal to the arithmetic mean of constant gradients
grad Πu/T on the triangles T ∈ Th meeting a.
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1. Introduction and basic notions. This paper concerns the classical topic
of discrete approximation of smooth functions in two variables by polynomials, see
Beresin, Shidkov [1], whose dynamical recent development can be illustrated by the
papers Sauer, Xu [2] and Gasca, Sauer [3]. We study the least–squares approxima-
tion by quadratic polynomials under the condition that points of approximation are
vertices of a given triangulation. In this section, we describe a class of six–tuples of
vertices of a given strongly regular triangulation Th in which, due to Daĺık [7], the
problem of interpolation by quadratic polynomials does always have a unique solu-
tion. In Section 2, we prove a theorem saying that quadratic discrete least–squares
approximations in vertices from specified sets are of optimal order. In Section 3, we
prove the following statement for any affine neighbourhood b1, . . . , b6 of an inner ver-
tex a with triangles T1 = ab6b1, T2 = ab1b2,. . . , T6 = ab5b6 in Th. For any function
u ∈ C3(T1 ∪ . . . ∪ T6), its projection Πu ∈ C(T1 ∪ . . . ∪ T6) linear on T1, . . . , T6,
and for the quadratic least–squares approximation Q of u in b1, . . . , b6, a, we have
grad Q(a) = 1

6 (grad Πu/T1 + . . .+ grad Πu/T6).
We denote by (x1, x2) the cartesian coordinates of a point x ∈ R2 and put

D(abc) =

∣∣∣∣
a1 − c1 a2 − c2
b1 − c1 b2 − c2

∣∣∣∣

for arbitrary points a, b, c ∈ R2. It is known that D(abc) > 0 if and only if the ordered
triple (a, b, c) is oriented positively and A(abc) = |D(abc)| is the area of triangle abc.
We denote by P2 the space of polynomials in the variables x1, x2 of total degree less
than or equal to two.

Definition 1.1. Points b1, . . . , b6 ∈ R2 are said to be poised if there exists a
unique P ∈ P2 such that

P (bi) = fi for i = 1, . . . , 6(1.1)

for arbitrary given f1, . . . , f6 ∈ R.
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Definition 1.2. For arbitrary points b1, . . . , b6 ∈ R2, we put

l(b1, . . . , b6) = D(b1b5b6)D(b1b2b3)D(b4b5b3)D(b4b6b2)

+ D(b1b3b5)D(b1b6b2)D(b4b5b6)D(b4b2b3).

The following statement gives us the basic tool for the decision whether a six–tuple
of points is poised.

Theorem 1.3. Points b1, . . . , b6 ∈ R2 are poised if and only if l(b1, . . . , b6) 6= 0.
Proof. See [5].
Definition 1.4. We say that a finite nonempty set T of triangles is a triangu-

lation if the intersection of any two different triangles T1, T2 is either a common side
of T1, T2 or a common vertex of T1, T2 or an empty set.

The symbol Th denotes a triangulation with the largest length of sides of triangles
equal to h. Further, we denote by Ωh the union

⋃
T∈Th T and by Vh the set of vertices

of triangles from Th. We put

Nh(a) = {b ∈ Vh; ab is a side of a triangle from Th}

for every a ∈ Vh.
Definition 1.5. Let Ω be an open and bounded set in R2 (a domain in R2) and

Th be a triangulation. We denote by δΩ the boundary of Ω and call Th a triangulation
of Ω if Vh ⊆ Ω and Vh ∩ δΩh = Vh ∩ δΩ.

Definition 1.6. A system F = (Th)h∈I of triangulations of a domain Ω in R2

is called strongly regular if
a) I is a set of positive real numbers satisfying 0 ∈ I and
b) there exists a κ > 0 such that all triangles T ∈ Th ∈ F contain a disc with

radius κh.
It can be shown that for every strongly regular system F there exist κ0 > 0,

α0 > 0 such that each triangle from Th has all sides longer than κ0h and all inner
angles greater than α0.

Notations. We denote by F a strongly regular system of triangulations of a
fixed domain Ω characterized by the parameters κ, κ0, α0 and reserve the symbols
C,C1, . . . for generic constants independent of the parameter h.

We describe two basic types of local poised sets of vertices of a triangulation.
Definition 1.7. We call mutually different vertices b1, . . . , b6 of a triangulation

Th ∈ F a neighbourhood of a triangle T1 ∈ Th if T1 = b1b3b5 and triangles

T2 = b1b2b3, T3 = b3b4b5, T4 = b5b6b1

belong to Th.
The following theorem says that neighbourhoods of triangles are poised.
Theorem 1.8. There exists a constant C > 0 satisfying

l(b1, . . . , b6) > C A(Tk)A(T2)A(T3)A(T4) for some k ∈ {1, . . . , 4}

for all Th ∈ F and all T1 ∈ Th with a neighbourhood b1, . . . , b6 such that T1, . . . , T4

have no inner angles obtuse.
Proof. This is the content of Daĺık [6].
Now we relate poised sets to vertices of triangulations from F.
Agreement. For arbitrary points x1, . . . , xn ∈ R2, the operations + and − are

addition and subtraction modulo n on the set {1, . . . , n} of indices.
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Definition 1.9. Let a ∈ Vh and b1, . . . , bk ∈ Nh(a). We put Ti = abi−1bi, αi =
6 bi−1abi, βi = 6 bibi−1a, γi = 6 abibi−1 for i = 1, . . . , k and call b1, . . . , bk an oriented
neighbourhood of a whenever D(abi−1bi) > 0 for i = 1, . . . , k and α1 + . . .+ αk = 2π.
See Fig. 1. r
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Theorem 1.10. There exists a constant C > 0 such that

l(b1, . . . , b6) > C h8

for all Th ∈ F, b6 = a ∈ Vh and oriented neighbourhoods b1, . . . , b5 of a with the
following properties

a) max(α1, . . . , α5, π/2) ≤ αi + αi+1for i = 1, . . . , 5,
b) αi ≤ 2

3π for i = 1, . . . , 5,
c) π < αi + αi+1 for at most one index i,
d) βi ≤ π/2, γi ≤ π/2 for i = 1, . . . , 5.

Proof. See Daĺık [7].
In [7], a simple reduction procedure is described which selects an oriented neigh-

bourhood with the properties a) – d) from the set Nh(a) of any inner vertex a of a
triangulation Th ∈ F such that |Nh(a)| ≥ 5 and the inner angles of all triangles from
Th meeting a are less than or equal to π/2.

Definition 1.11. Let us assume that Th ∈ F and either
a) b1, . . . , b6 is a neighbourhood of a triangle from Th satisfying the assumptions

of Theorem 1.8 or
b) b1, . . . , b5 is an oriented neighbourhood of a vertex a = b6 of Th satisfying the

assumptions a) – d) of Theorem 1.10.
Then we call {b1, . . . , b6} a local poised set (in Th).

2. Quadratic least squares approximation. In this section we describe cer-
tain supersets of local poised sets and prove that discrete quadratic least–squares
approximations in points from these supersets are of optimal order.

Definition 2.1. Let b1, . . . , b6 be a local poised set in Th ∈ F. We put B =
{b1, . . . , b6} in the case a), B = {a} ∪Nh(a) in the case b) from 1.11 and call the set

E(b1, . . . , b6) = {x ∈ Vh |xyz ∈ Th for some y, z ∈ B}

an extension of {b1, . . . , b6}.
For every nonempty set E ⊆ Vh, we denote by CE the convex closure of E. Instead

of CE(b1, . . . , b6), we briefly write CE.
If {b1, . . . , b6} is a local poised set in a triangulation Th ∈ F and we put

l1(x) = l(x, b2, . . . , b6)
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then l1(b1) 6= 0 by Theorems 1.8, 1.10 and it is easy to see that l1(bj) = 0 for
j = 2, . . . , 6. By symmetry, analogous properties share the following quadratic poly-
nomials l2, . . . , l6. See [5] for more details.

Definition 2.2. Let be {b1, . . . , b6} a local poised set in Th and K a closed convex
set such that C{b1, . . . , b6} ⊆ K ⊆ CE. We put

li(x) = l(x, bi+1, . . . , bi+5) and Li(x) =
li(x)

li(bi)
for i = 1, . . . , 6.

We have Li(b
j) = δij for i, j = 1, . . . , 6, so that L1, . . . , L6 is a Lagrange basis in

P2 related to the points b1, . . . , b6 and

L(x) =

6∑

i=1

u(bi)Li(x)

is the Lagrange interpolation polynomial of any function u ∈ C(K) in b1, . . . , b6.
Lemma 2.3. There exists a constant ν1 > 0 such that

|Li(x)| ≤ ν1,

∣∣∣∣
∂Li
∂xι

(x)

∣∣∣∣ ≤ ν1h
−1(2.1)

for all triangulations Th ∈ F, all local poised sets {b1, . . . , b6} in Th, all x ∈ CE,
i = 1, . . . , 6 and ι = 1, 2.

Proof. Due to Theorems 1.8, 1.10 and to the strong regularity of F, there exist pos-
itive constants C,C1, C2 such that C h8 < |li(bi)|, |li(x)| < C1h

8 and |∂li(x)/∂xι| <
C2h

7 for all local poised sets {b1, . . . , b6}, all x ∈ CE, i = 1, . . . , 6 and ι = 1, 2. The
statements follow immediately.

As a direct consequence, we obtain the following result.
Lemma 2.4. Assume that {b1, . . . , b6} is a local poised set in Th ∈ F and P ∈ P2

satisfies

|P (bi)| ≤ c h3 for i = 1, . . . , 6

for some c ≥ 0. Then

|P (x)| ≤ 6 ν1c h
3 ∀x ∈ CE.

In [7], we have proved the following two statements.
Theorem 2.5. Assume that {b1, . . . , b6} is a local poised set in Th ∈ F, K is a

closed convex set with C{b1, . . . , b6} ⊆ K ⊆ CE and functions u ∈ C3(K), P ∈ P2

satisfy |(u − P )(x)| < C1h
3 for all x ∈ K. Then there exists a constant C > 0 such

that
∣∣∣∣
∂|m|(u− P )

∂xm
(x)

∣∣∣∣ ≤ C h3−|m| ∀x ∈ K

for all multiindices m, |m| ≤ 2.
Theorem 2.6. Let Th ∈ F, {b1, . . . , b6} be a local poised set in Th and u ∈

C3(CE). Then there exist a unique interpolation polynomial L ∈ P2 of u in b1, . . . , b6

and a constant C > 0 such that
∣∣∣∣
∂|m|(u− L)

∂xm
(x)

∣∣∣∣ ≤ C h3−|m| ∀x ∈ CE
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for all multiindices m, |m| ≤ 2.

Now, we prove our result concerning the local discrete least–squares approxima-
tion.

Theorem 2.7. Let us assume that {b1, . . . , b6} is a local poised set in Th ∈ F,
{b1, . . . , b6} ⊆ B ⊆ E(b1, . . . , b6) and u ∈ C3(CE). Then there exist a unique discrete
least–squares approximation Q ∈ P2 of u in the vertices from B and a constant C > 0
such that

∣∣∣∣
∂|m|(u−Q)

∂xm
(x)

∣∣∣∣ ≤ C h3−|m| ∀x ∈ CE

for all multiindices m, |m| ≤ 2.

Proof. Consider the Lagrange basis functions L1, . . . , L6 related to b1, . . . , b6 and
denote B = {b1, . . . , b6, . . . , bk}. Then

Q(x) =
6∑

i=1

qiLi(x)

is a discrete least–squares approximation of u in b1, . . . , bk if and only if

M>Mq = M>b

for M = (Lj(b
i))j=1,...,6

i=1,...,k , q = (q1, . . . , q6)>, b = (u(b1), . . . , u(bk))>. Because Lj(b
i) =

δij for i, j = 1, . . . , 6, the columns of M are linearly independent. This guaranties
existence and unicity of Q by Bjőrck [4], Theorem 1.1.3.

The interpolant L(x) =
∑6
j=1 u(bj)Lj(x) satisfies

|(u− L)(bi)| ≤ C h3 for i = 1, . . . , k

by Theorem 2.6. Then

k∑

i=1

(u−Q)(bi)2 ≤
k∑

i=1

(u− L)(bi)2 ≤ C h6

and we have

|(u−Q)(bi)| ≤ C h3 for i = 1, . . . , k.

Of course

|(L−Q)(bj)| ≤ C h3 for j = 1, . . . , 6,

so that |(L − Q)(x)| ≤ C h3 ∀x ∈ CE by Lemma 2.4. This result and Theorem 2.6
give us

|(u−Q)(x)| ≤ C h3 ∀x ∈ CE

and we finish the proof by an application of Theorem 2.5.
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3. Approximation of gradu. Now, we prove a special property of gradQ(a)
for any vertex a with affine neighbourhood b1, . . . , b6 in Th ∈ F, any smooth function
u and for the least–squares approximation Q of u in the points b1, . . . , b6, a.

Definition 3.1. We call Π a piecewise linear projection related to triangles
T1, . . . , Tk whenever for every u ∈ C(T1 ∪ . . . ∪ Tk), Πu(b) = u(b) in all vertices b of
triangles T1, . . . , Tk and Πu is linear on each of the triangles T1, . . . , Tk.

Definition 3.2. Let us put b̂1 = (−1, 1), b̂2 = (−1, 0), b̂3 = (0,−1), b̂4 =

(1,−1), b̂5 = (1, 0), b̂6 = (0, 1), b̂7 = â = (0, 0), T̂i = âb̂i−1b̂i for i = 1, . . . , 6 and
Θ̂ = T̂1 ∪ . . . ∪ T̂6. See Fig. 2.
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We denote by Π̂ the piecewise linear projection related to T̂1, . . . , T̂6.
Lemma 3.3. Let û ∈ C(Θ̂) and Q̂ ∈ P2 be a discrete least–squares approximation

of û in b̂1, . . . , b̂7. Then

grad Q̂(â) =
1

6

6∑

i=1

grad Π̂û/T̂i .

Proof. The polynomial Q̂(x̂) = c1x̂
2
1 +c2x̂1x̂2 +c3x̂

2
2 +c4x̂1 +c5x̂2 +c6 is a discrete

least–squares approximation of û in b̂1, . . . , b̂7 if and only if the sum

7∑

i=1

(
ûi − Q̂(b̂i)

)2

is minimal for ûi = û(b̂i). This is equivalent to the system M~c = N~u of normal

equations, where ~c = (c1, . . . , c6)
>

, ~u = (û1, . . . , û7)
>

and

M =




4 −2 2 4
−2 2 −2 −2

2 −2 4 4
4 −2
−2 4

4 −2 4 7



, N =




1 1 1 1
−1 −1

1 1 1 1
−1 −1 1 1

1 −1 −1 1
1 1 1 1 1 1 1



.

This system has a unique solution

c1 = ( û2 +û5 −2û7)/2
c2 = (−û1 +û2 +û3 −û4 +û5 +û6 −2û7)/2
c3 = ( û3 +û6 −2û7)/2
c4 = (−û1 −2û2 −û3 +û4 +2û5 +û6 )/6
c5 = ( û1 −û2 −2û3 −û4 +û5 +2û6 )/6
c6 = ( û7)

,
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so that grad Q̂(â) =

(
c4
c5

)
= 1

6

(
−û1 − 2û2 − û3 + û4 + 2û5 + û6

û1 − û2 − 2û3 − û4 + û5 + 2û6

)
. On the other

hand, we have

grad Π̂û/T̂1
=

(
û6 − û1

û6 − û7

)
, grad Π̂û/T̂2

=

(
û7 − û2

û1 − û2

)
,

grad Π̂û/T̂3
=

(
û7 − û2

û7 − û3

)
, grad Π̂û/T̂4

=

(
û4 − û3

û7 − û3

)
,

grad Π̂û/T̂5
=

(
û5 − û7

û5 − û4

)
, grad Π̂û/T̂6

=

(
û5 − û7

û6 − û7

)

and 1
6

∑6
i=1 grad Π̂û/T̂i = grad Q̂(â) follows immediately.

Now, we extend this statement to all inner vertices with an affine neighbourhood.
Definition 3.4. Let Th ∈ F, a = b7 be an inner vertex of Th and b1, . . . , b6 be

an orientation of Nh(a). If there exist a regular matrix B and a point c such that the
affine map

F : Θ̂ −→ Ωh, F (x̂) = B x̂+ c

satisfies F (b̂i) = bi for i = 1, . . . , 7, then we call b1, . . . , b6 an affine neighbourhood of
a = b7, put Ti = F (T̂i) for i = 1, . . . , 6, Θ = F (Θ̂) and relate a function u to every
û ∈ C(Θ̂) by

u(F (x̂)) = û(x̂) ∀x̂ ∈ Θ̂.

We denote by Π the piecewise linear projection related to T1, . . . , T6.
Because

7∑

i=1

(
P (bi)− u(bi)

)2
=

7∑

i=1

(
P̂ (b̂i)− û(b̂i)

)2

for all P ∈ P2, û ∈ C(Θ̂), a polynomial Q ∈ P2 is a discrete least–squares approxima-
tion of u in b1, . . . , b7 if and only if Q̂ ∈ P2 is a discrete least–squares approximation
of û in b̂1, . . . , b̂7.

Theorem 3.5. Let Th ∈ F, b1, . . . , b6 be an affine neighbourhood of a vertex
a = b7 and Q ∈ P2 be a discrete least–squares approximation of u ∈ C(CE) in
b1, . . . , b7. Then

gradQ(a) =
1

6

6∑

i=1

grad Πu/Ti .

Proof. If F is an affine map sending b̂i to bi for i = 1, . . . , 7, then

gradQ(a) = grad Q̂(F−1(a)) = J F−1(a)T grad Q̂(â)

= 1
6

∑6
i=1 J F

−1(a)T grad Π̂û/T̂i = 1
6

∑6
i=1 grad Πu/Ti

according to Lemma 3.3 and to the fact that Q̂ is the discrete least squares approxi-
mation of û in b̂1, . . . , b̂7. Here J F−1(a) is the Jacobi matrix of the vector–function
F−1 in the point a.

Due to Daĺık [7], gradP (a) = 1
6

∑6
i=1 grad ΠP/Ti is valid for all P ∈ P2, but

Theorem 3.5 is a special property of the discrete least–squares approximation Q.
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Corollary 3.6. For all triangulations Th ∈ F, all affine neighbourhoods
b1, . . . , b6 of a vertex a ∈ Vh, and all u ∈ C3(CE), there exists C > 0 such that

‖ gradu(a)− 1

6

6∑

i=1

grad Πu/Ti‖ < C h2

for any vector–norm ‖ · ‖.
Proof. This statement follows by Theorem 3.5 and by ‖ gradu(a)− gradQ(a)‖ <

C h2, valid due to Theorem 2.7.
As grad Πu/Ti is an approximation of gradu(a) of order 1 for i = 1, . . . , n, Corol-

lary 3.6 presents a superapproximation of gradu(a). This classical superapproxima-
tion formula, used by ingeneers routinely, has been analysed in Kř́ıžek,Neittaanmäki
[8] theoretically for the first time.
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[7] J. Daĺık, Quadratic interpolation in vertices of planar triangulations and an application, sub-
mitted for publication in SIAM Journal on Numerical Analysis.
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