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MODELING AND OPTIMIZATION OF A DYNAMIC SEPARATION
PROCESS USING MIXED INTEGER NONLINEAR PROGRAMMING

STEFAN EMET ∗ AND TAPIO WESTERLUND †

Abstract. In the present paper a chromatographic separation problem is modeled and solved
using Mixed Integer Nonlinear Programming (MINLP) techniques. The problem is a complex process
design problem that can be solved with the presented techniques. The objective is to maximize the
profit for continuous cyclic operation, and at the same time, to find the optimal configuration for
the separation column system.

The dynamics of the chromatographic separation process is modeled as a boundary value prob-
lem which is solved, repeatedly within the optimization, using a relatively fast and numerically
robust finite difference method. Parameters within the model enable the control of the dynamic
behavior of the chromatographic separation process. The optimization problem is solved using the
Extended Cutting Plane (ECP) method. The purity demands of the separated products are modeled
as constraints using control parameters.

A fructose-glucose example is solved using the presented techniques. The obtained results are
promising. It is shown that the production planning can be done efficiently for different purity
requirements, in such a way that all the output of a system can be utilized. Using a process design
that is optimized it is thus possible to use existing complex systems, or to design new systems, more
efficiently and also to reduce the energy costs or the costs in general.

Key words. Process design, Boundary value problem, Mixed Integer Nonlinear Programming,
Extended Cutting Plane Method
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1. Introduction. The problem of efficiently separating products of a multicom-
ponent mixture is a complex challenge for many industries. The objective is to, within
reasonable costs, separate products of a mixture as efficiently as possible retaining the
preset purity requirements. The costs to be considered are, for instance, raw-material,
equipment, machines, energy, waste costs etc. The energy consumption and/or the
amount of waste are also important environmental costs that can be reduced using
efficient mathematical optimization techniques.

The modeling and the design of different chromatographic separation processes
have been addressed for example in [5], [1], [8] and [4]. The optimization of separa-
tion processes has been adressed in the pertinent literature in, for example, [2]. A
sequentially simulated moving bed (SSMB) chromatographic separation process prob-
lem was recently modeled and solved mathematically as an MINLP problem in [6]. A
brief introduction to the SSMB technique and the underlying physical and chemical
processes is also given in [6]. Comparisons of solving the MINLP problem in [6] using
the ECP method and a BB method was carried out in [3].

2. Chromatographic separation. The technique of separating components
from a solution by differential migration during passage through a porous medium,
e.g. through a bed in a column, is called chromatographic separation. The chro-
matographic separation technique was introduced already in 1906, [11], by Mikhail
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Semyonovich Tswett, a Russian botanist. Later on, in the 40’s, 50’s, and 60’s, the
chromatography was also applied within the gas industry. In the 70’s the techniques
of chromatographic separation were developed within oil industries and also within
biotechnological industries. In the past decades the technique has been utilized and
further developed within, for instance, the chemical and the pharmaceutical indus-
tries.

2.1. Process design issues. A two column separation system is illustrated in
Fig. 1. At the inlet of a column it is possible to feed the mixture to be separated (e.g.
molasses) or the eluent (e.g. water). The components of the mixture will flow down
through the column in such a way that some components will get faster through the
column than will others. At the outlet of the column one can thus collect the separated
products, provided that they are pure enough. The logical decisions regarding the
investment and/or the existence of a column, the input of feed mixture/eluent, the
outtake of products, and the possible recycling connections are modeled using binary
variables. The modeling and the notations used in this paper are illustrated in Fig. 1.

Note, that if the mixture is fed during a relatively long period the outflow will
be less separated. The outflows that can not be separated can, for instance, be
temporarily collected in a wastebin. The unpure outflows can, thus, be recycled into
the same column or into another column for further separation. The production
planning questions of a column system concern, for instance, the scheduling of the
feeds, the outflows, and the possible recycling. There are many parameters (e.g.
column height, column width, and flowrates) that affect the separation of each column.
The process design problem of a separation column system is, thus, to find the optimal
parameters for each column.
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Fig. 1. A two-column system with two components.

The responses of feeding a glucose/fructose mixture into a column is illustrated
in Fig. 2. Each component of the mixture have equal concentration (15 g/100ml).
From Fig. 2 it can be seen that the glucose, c1, flows through the column faster than
the fructose, c2. Note, that the outflowing products may have a low concentration
but a high purity in some intervals. It can further be seen from Fig. 2, that there is a
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time interval around 205 minutes when the outflow is relatively unpure. The unpure
outflows should thus be recycled and a more complex system with more columns
and/or recycling possibilities is needed. The purpose is to periodically repeat the
decisions regarding the feed inputs and the handling of the outflows in such a way
that a column system could be as efficiently used as possible.
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Fig. 2. The responses of a short feed of a glucose (c1)/fructose (c2) mixture.

3. A dynamic model of the separation process. The changes in the concen-
trations of the components during the separation process are mathematically modeled
here using two-dimensional partial differential equations where the coordinates are
given by the time and the height-position in the column.

The concentration of component j at the time t ≥ 0 and at the height-position
z within column k is denoted by ckj(t, z). The height of a column is denoted by zH ,
and hence 0 ≤ z ≤ zH . The dynamics of the responses of the concentrations within
each column can be modeled with the following system of PDEs [4]:

(1 + Fβj)
∂ckj
∂t

+ F ·
C∑

l=1

βjl

(
ckl
∂ckj
∂t

+ ckj
∂ckl
∂t

)
+ u

∂ckj
∂z

= Dj
∂2ckj
∂z2

(1)

where F , βj , βjl, u, and Dj for j, l = 1, . . . , C, and k = 1, . . . ,K are parameters that
can be estimated, for example, from laboratory data. The parameters for a system
consisting of two components (fructose and glucose), presented in [6], were used in
the present paper.

3.1. Boundary conditions. The feed and the recycling decisions provide the
following boundary conditions (at the inlet of column k):

ckj(t, 0) = yink (t) · cinj +

K∑

l=1

xlk(t) · clj(t, zH)(2)

where cinj is the concentration of component j in the feed mixture. The logical func-

tions yink (t) and xlk(t) in Eq. (2) are modeled using the following stepwise-linear
functions:

yink (t) =

T∑

i=1

yinki · δi(t)(3)

xlk(t) =

T∑

i=1

xlik · δi(t)(4)
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where the δi(t)-function is defined as

δi(t) =

{
1 if t ∈ [ti−1, ti], i = 1, . . . , T
0 otherwise.

(5)

Note, that the beginning of a period can be declared by defining some of the feed
variables within the first interval in advance. Here the cycle was defined to begin
with a feed to the first column (i.e., yin11 = 1, yin1 (0) = 1, and xk1(0) = 0). One of the
main ideas in the modeling is that the decisions could be made in periods of τ . That
is, the system should be in a so-called steady state condition [6]. Mathematically, the
steady state condition of the system can simply be modeled as periodical boundary
conditions as follows:

ckj(0, z) = ckj(τ, z)(6)

That is, the concentrations within a column should be equal at the start and at the
end of a period. Conditions on the derivatives of the concentration functions can be
formulated as follows:

∂ckj
∂t

(0, 0) =
∂ckj
∂t

(τ, 0)(7)

∂ckj
∂t

(0, zH) =
∂ckj
∂t

(τ, zH)(8)

∂ckj
∂z

(0, 0) =
∂ckj
∂z

(τ, 0)(9)

∂ckj
∂z

(0, zH) =
∂ckj
∂z

(τ, zH)(10)

3.2. Solving the boundary value problem. An analysis of solving the bound-
ary value problem using orthogonal collocation, neural networks, and finite differences
was conducted in [6]. The finite difference method was reported in to be the most
robust one. The periodical behavior of the solution was achieved by solving the non-
linear PDEs (1) iteratively until the changes in the concentrations of two successive
iterations resided within a given tolerance [3].

4. Formulation of the optimization problem. The objective function to
maximize the profit for continuous cyclic operation and to optimize the configuration
of the column system can be expressed as follows:

max
1

τ

K∑

k=1

T∑

i=1






C∑

j=1

pjykij

∫ ti

ti−1

ckj(t, zH)dt


− wyinki (ti − ti−1)


−

K∑

k=1

rkYk(11)

where pj and w are parameters that denote the prices of the feed inputs and the
collected products. The annualized investment costs of the columns are modeled in
the last sum in (11), where the parameter rk is given by the annuity of the investment
cost of column k. The binary variables ykij and yinki in (11) indicate when products are
collected and feeds are input, respectively. Note, that the objective function in (11)
is highly nonlinear, since the concentrations, ckj(t, zH), are functions of all the time
variables and the input and recycling variables. Hence, the formulation in Eq. (11)
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is not very suitable to be used as such within a local optimization method. Denoting
the outtaken products with skij , and the length of the feeds with dki, the following
objective can be used:

max





1

τ

K∑

k=1

T∑

i=1






C∑

j=1

pjskij


− wdki


−

K∑

k=1

rkYk



(12)

The products, skij , and the feeds, dki, can be modeled using linear constraints, as will
be described in the following.

Firstly, that the time points are, in increasing order:

ti−1 ≤ ti, i = 1, . . . , T(13)

The variables regarding the feed inputs and the handling of the outflows are restricted
by the variables that indicate the existence of each column as follows:

yinki − Yk ≤ 0(14)

ykij − Yk ≤ 0(15)

xlik − Yk ≤ 0(16)

That is, if Yk = 0, then the corresponding binary variables, yinki , ykij and xlik must also
be zero. The outflow of column k during the time interval [ti−1, ti] can be collected
as a product, recycled, or put in a waste-bin. This can be formulated as follows:

C∑

j=1

ykij +
K∑

l=1

xkil ≤ 1(17)

Hence, if the left hand side of (17) is zero, then the outflow can be considered as
waste. Within each interval, it is also possible to require that the outflow of each
column should either be collected as a product or be recycled further. This can be
managed by rewriting (17) as an equality constraint:

C∑

j=1

ykij +

K∑

l=1

xkil = 1(18)

Put feed, recycle, or eluent into column k:

yinki +
K∑

l=1

xlik ≤ 1(19)

The volume of the feed that is put into column k within interval i, that is used in
the objective function in (12), is modeled using the variable dki with the following
“big-M” formulation:

(ti − ti−1)−M1(1− yinki ) ≤ dki(20)

where M1 ≥ max{ti − ti−1}. The volumes of the collected products, skij , in (12) are
similarly modeled as follows:

skij ≤ mkij(21)

skij ≤M2 · ykij(22)
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where M2 ≥ max{skij}. Hence, if ykij = 0, then skij = 0, otherwise skij ≤ mkij .
Because the collected products will be maximized in (12), the constraint in (21) will
become active (i.e., skij = mkij) when ykij = 1. The mkij -variable above is defined
as the mass of product j within interval i at the outlet of column k. This can be
formulated as an equality constraint as follows:

mkij =

∫ ti

ti−1

ckj(t, zH)dt(23)

where the concentrations ckj(t, z) are obtained by solving the boundary value problem.
The purity constraints were formulated as the fraction of the collected product in the
total mass of all components:

K∑
k=1

T∑
i=1

skij

K∑
k=1

T∑
i=1

qkij

≥ Rj(24)

where Rj ≤ 1 denotes the purity requirement of component j. The qkij -variables
in (24) are used for measuring the volume of all components within interval i if the
component j is collected from column k:

C∑

j=1

mkij −M3ykij ≤ qkij(25)

In general, nonlinear equalities of the type in (23) might cause problems in many
optimization methods, for example, difficulties in convergence. Furthermore, it is un-
necessarily strict to require (23) to hold also when no products are collected. Assume
that component j is collected from column k during interval i. The equality in (23)
can be relaxed as follows:

mkij ≤
∫ ti

ti−1

ckj(t, zH)dt+M · (1− ykij)(26)

where M ≥ max{ckj(t, zH)(ti− ti−1)}. The maximization of variable skij in (12) will,
through (21), also maximize variable mkij whenever ykij = 1. On the contrary, the
masses of the other products, mkil, l 6= j, within the outflow from column k during
interval i should satisfy the following constraints:

mkil ≥
∫ ti

ti−1

ckj(t, zH)dt−M · (1−
J∑

j=1, l6=l
ykij)(27)

Note that the masses of the unpure fractions, mkil, in (27) only affect the denominator
of the purity constraint in (24) and will thus be minimized during the optimization.
That is, the masses of the collected products that are to be maximized will be un-
derestimated in (26) and the masses of the unpure fractions will be overestimated
through (27).
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4.1. The ECP method. The optimization problem was solved using the Ex-
tended Cutting Plane (ECP) method that is an extension of Kelley’s Cutting Plane
(CP) method [7] for solving convex NLP problems. The comparisons in [9] and [3] re-
vealed that the ECP method generally requires magnitudes fewer function evalutions
than a nonlinear BB-method. This property of the ECP method is a major advan-
tage in the chromatographic separation problem, because each time the nonlinear
contraints are evaluated, the integrals have to be calculated and hence the boundary
value problem has to be solved.

The ECP method was first extended in order to enable the solving of convex
MINLP problems [12]. The method was then developed in [13] to cover pseudo-
convex MINLP problems. In [10], the convergence properties of both MINLP and
NLP problems with quasi-convex constraints were analyzed. The method was further
developed in [14] in order to enable the solving of problems consisting of both a
pseudo-convex objective function and pseudo-convex constraints.

The general MINLP problems to be solved with the ECP method can be formu-
lated as follows:

min
z∈N∩L

f(z)
{
N = {z|g(z) ≤ 0}
L = {z|Az ≤ a, Bz = b} ∩X×Y

(28)

The variable vector, z, consists of both a continuous part and an integer part that
are bound by the X and Y sets, respectively. The objective function, f(z), and the
nonlinear constraints, g(z), should be differentiable pseudo-convex functions defined
on the set L. If the functions g and f are pseudo-convex and if the set X is a compact
subset of <n and if Y is a finite discrete set in Zm, then the ECP algorithm will ensure
convergence to the global optimal solution.

Assuming that the objective function is a pseudo-convex function, the generalized
ECP method solves the problem (28) by solving the following sequence of MINLP
subproblems:

min
z∈Nr∩Ln

r

µ
{
Nr = {z ∈ N|f(z) − fr ≤ 0}
Lnr = {z ∈ L|µ ≤ fr; fr +∇f(zl

r)T(z− zl
r) ≤ 0; l = 1,2, . . . ,n}

(29)

where fr is a valid upper bound on the objective function, f(z). Note, that the
subproblem (29) has a linear objective function and pseudo-convex constraints. Each
subproblem (29) is solved with the ECP method that solves the following sequence of
Mixed Integer Linear Programming (MILP) problems:

min
(µ,z)∈Ωk

µ(Pk)(30)

where the set Ωk is defined by

Ωk = L ∩ {z | lj(z) ≤ 0, j = 1,2, . . . ,Jk}(31)

This iterative procedure begins with Ω0 = L. Note, that lj(z) ∈ Ωk are cutting
planes underestimating the entire feasible region of (P ) and Jk is the number of
cutting planes in Ωk at iteration k. After each iteration, a new MILP subproblem
is generated by adding and/or modifying old cutting planes of the most violating



MODELING AND OPTIMIZATION OF A DYNAMIC SEPARATION PROCESS 355

nonlinear constraints. The generated cutting planes, with respect to the constraints,
are of the following type:

gi(z) + αr′
k∇gi(z)T(z− zk) ≤ 0(32)

where zk is the solution to the previous MILP problem (Pk). The scalar, αr
′
k , is

initially one but can be updated in subsequent iterations in order to guarantee that
no part of the feasible region is cut off. Convergence to the global solution is ensured
when the sequence of points converges to a solution in the feasible region of the
problem (P ), defined by the set N ∩ L, where N ∩ L is a subset of Ωk. For a more
detailed description of the ECP algorithm, see [14].

Note, that the ECP-method does not require any second order information of the
nonlinear functions. Only one single value of each nonlinear constraint, and one single
gradient (of the most violating constraint) need to be calculated in each iteration.
In the present paper, the gradients of the integrals were approximated using finite
differences in a similar way as in the solving of the PDEs.

5. Numerical results. The results of solving the separation problem for differ-
ent purity requirements will be presented in the following. For simplicity, the invest-
ment costs for the columns were neglected and the binary variables, Yk, denoting the
existence of each column, were predefined. The following parameters were used for
the costs in (12): p1 = 1.0, p2 = 1.4, w = 4.5, and r1 = r2 = 0.0. The costs of the
products and the feeds are normalized in such a way that product 1 has unit price,
while product 2 is 40% more valuable. Thus, in some problems, higher purity was
required for the second product. The feed cost can be interpreted as 30% of the value
of product 1 and 21.4% (i.e., 0.3/1.4) of product 2. The problem was modeled and
solved for a simple one-column system with no recycling, and a two-column system
with recycling possibilities from column 1 to column 2. The one-column system was
modeled for periods consisting of up to four intervals, while the two-column prob-
lem was modeled for up to seven time intervals. Note, that the complexity of the
optimization problem increases with the number of intervals, as more intervals imply
more variables and more constraints.

The obtained results when solving a one-column system for different purity re-
quirements are presented in Table 1. Table 1 contains the obtained objective value,
f∗, the obtained purity, the number of solved MILP subproblems, and the number
of evaluations of the functions and the gradients. Furthermore, the total number of
times the system of PDEs were solved and the CPU-times (on a 2.53 GHz Pentium 4
PC) are also presented in the table. The profiles of the concentrations of a solution
at the outlet of the column are illustrated in Fig. 3. The obtained purities within
each interval are also presented in the figure, while the actual purities of the total
sum of each product are given in Table 1. These are in some cases slightly higher
than the purity requirement because of the underestimation of the products and the
over-estimation of the non-products. The value of the objective, f ∗, that is given in
Table 1, was calculated from (11) using the obtained solution.

Fig. 3 indicates that if the purity demand is low all the outflows can be collected
as separated products. However, for the purity requirement (0.90, 0.95) an additional
column is needed in order to enable further separation of the unpure outflow.

Higher purity requirements were used in the separation problem of two-column
systems where recycling was possible. The results are presented in Table 2 and the
concentration profiles of the solution to one of the problems is illustrated in Fig. 4.
Note, that the gradients of the nonlinear constraints, ∇g, were approximated using
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Fig. 3. Profiles of the obtained solutions to a one-column problem.

forward and/or backward differences. Hence, the total number of times of solving the
PDEs (Table 2) increases with the number of evaluations of the nonlinear constraints
and with the number of evaluations of the gradients of these.
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Fig. 4. A solution to the two-column problem for the purity demand (0.90, 0.90), f∗ = 14.01.

6. Conclusions. In the present paper, techniques for solving a chromatographic
separation problem were presented. The separation process was modeled as a bound-
ary value problem containing both design and control variables for optimal cyclic
operation, of an optimized column system. The presented MINLP formulation en-
ables a solving of the process design problem of chromatographic separation column
system. The presented techniques can be applied, with low computational costs, to

Table 1
Results of a one-column system for different purity demands.

Purity requirement
(0.80, 0.90) (0.85, 0.90) (0.90, 0.90) (0.90, 0.95)

f∗ 12.28 10.48 8.62 9.56
purity (0.81, 0.90) (0.86, 0.91) (0.90, 0.90) (0.90, 0.95)
# MILP 124 90 136 114
# f-eval. 124 111 205 114
# g-eval. 2000 1408 2144 1840
# ∇f 33 14 14 17
# ∇g 90 72 118 96
# PDE sol. 1385 1096 1786 1459
CPU [sec] 72.5 40.2 78.8 64.5
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Table 2
Results of a two-column separation system.

Purity requirement
(0.90, 0.90) (0.90, 0.95) (0.95, 0.95) (0.95, 0.99)

f∗ 14.01 12.01 11.54 7.96
purity (0.90, 0.93) (0.91, 0.95) (0.97, 0.95) (0.96, 0.99)
# MILP 150 105 146 152
# f-eval. 150 105 146 175
# g-eval. 4800 3360 4672 4832
# ∇f 10 7 11 15
# ∇g 139 96 134 135
# PDE sol. 3408 2296 3142 3065
CPU [sec] 780.0 192.2 395.48 261.1

improve the efficiency of already existing column systems.

An illustrative fructose-glucose example was solved using the presented formu-
lations. The MINLP problem was numerically solved using the ECP-method that
has been proven efficient on many complex engineering problems. The ECP-method
requires relatively few non-linear function evaluations (in this particular case, evalu-
ations of integrals), which is a great advantage in the presented separation problem
where a boundary value problem is solved in each evalutaion.

It was shown that, for a lower purity demand, all the outflow of a one-column
system could be utilized as products. For a higher purity demand, a more complex
system with two or more columns was needed in order to enable the recycling of
unpure outflows for further separation.

Improvements in the solving of the boundary value problem, the MINLP problem,
and also in the modeling and design are challenges in future research. Some of the
design variables of the column system, for instance the size of each column and the
flowrates in each column, could be included as variables into the MINLP problem.
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