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METHOD OF GENERATION OF ADAPTIVE ANALYTICAL GRIDS
BASED ON POISSON’S EQUATION

NADEGDAA FEDOSENKO ∗ AND EVGENY SOKOLOV †

Abstract. In [1], the new method of grid generation based on an analytical solution of some
system of elliptic differential equations had been suggested. The functions that map computational
space to physical one (mapping-functions, MF) were obtained there in exact form. Method of quality
control of obtained grids was based on application of analytical solutions of a boundary value problem
for the class of higher order equations. But, such approach allows to control grid properties only near
boundaries of computational domain, not inside it. In order to overcome this disadvantage, exact
analytical solution of Poisson’s equation is obtained in this paper and than used for grid generation.
Its right-side source term allows to control grid properties inside computational domain.

It is well known that solution of Poisson’s equation is expressed in terms of Green’s function.
Derivation of its finite algebraic form is described in present paper. Finally, it allows to use solution
as effective tool for grid generation and control.

Approach is illustrated by examples of grid under the control.
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1. Introduction. First, let us remind briefly traditional method of generation of
elliptical grids. Usually, some system of elliptical equations satisfying to an extremum
principle is formulated and the isolines of functions obtaining from a solution are
taken as new coordinate lines. Extremum principle guarantees a one-to-one mapping
between the physical and transformed regions if equations are formulated in physical
space. To solve a system, it has to be written in computing space that essentially
complicates equations. It leads to a system of closure of set of non-linear equations
in computational space instead of linear equation in physical space. This system
converges slowly with increasing of complexity of calculating domain.

In this paper, in accordance with ideas [1], generation equations are formulated in
computational space. Their solution gives a MF which maps points from computing
space to physical, i.e. as it is required in the numerical methods. In [1], solutions of
a boundary value problem for the Laplace equation for square and cube (including
multidimensional ones) as final integrals had been presented. They allowed mapping
an arbitrary physical area to a cube or square. One of advantages of such approach
is simplicity of its extension on the case of multidimensional space.

The method of quality control of the obtained grid [1] was based on application of
analytical solutions of a boundary value problem for the class of higher order equations
(polyharmonic equation). The Laplace equation allows only setting the shape of
physical area. Increasing of equation order enabled to receive a sufficient amount of
free parameters permitting to control different properties of grids. Evidently, this way
does not allow controlling grid’s properties inside computational domain. In order to
do it, other family of PDE has to be used. The Poisson equation seems as appropriate
one for this objective. In this paper, general analytical solution of Poisson’s equation
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Fig. 2.1.

inside N -dimensional rectangle is introduced in finite algebraic form. Its right-side
source term, which depends on coordinates, presents in solution explicitly. That is
why it becomes possible to control grid behavior without difficulties.

2. Basic principle. As in [1], let us consider a solution of a boundary value
problem of map of computational space on physical one (Fig. 2.1):

(x1, x2, ..., xn)⇔ (ξ1, ξ2, ..., ξn)(2.1)

In the case under the study, the set of equations for a coordinate’s determination is

∆xi = Φ(ξ1, ...) where ∆ =

n∑

i=1

∂2

∂ξ2
i

, n− dimension of space(2.2)

The equations (2.2) are solved in space 0 < ξi < l.
The boundary conditions (BC) for a case of two dimensions (2D) are

x1= fx1
1 (ξ2), x2 = fx2

1 (ξ2), at ξ1 = 0;

x1= fx1
2 (ξ2), x2 = fx2

2 (ξ2), at ξ1 = l;

x1= fx1
3 (ξ1), x2 = fx2

3 (ξ1), at ξ2 = 0;(2.3)

x1= fx1
4 (ξ1), x2 = fx2

4 (ξ1), at ξ2 = l;

Functions fi are coordinates of the nodes along the physical boundary.
These boundary conditions may be extended to any more than two-dimensional

case. So, in three-dimensional case (3D) they will appear not as four BC on edges (as
in 2D), but six BC on surfaces.

3. Green’s function. Well-known form of analytical solution of Poisson’s equa-
tion [2] rewritten in introduced above notations looks as:

∆T = −Φ(ξ1, ξ2)

Here T corresponds to xiin (2.2).
The first boundary value problem for it inside interval 0 ≤ ξ1 ≤ l1 0 ≤ ξ2 ≤ l2

appears as:

T |ξ1=0 = f1(ξ2), T |ξ1=l1
= f2(ξ2), T |ξ2=0 = f3(ξ1), T |ξ2=l2

= f4(ξ1)
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The exact solution of this equation is of the form:

T (x, y)=

l1∫

0

l2∫

0

Φ(ω1, ω2)G(ξ1, ξ2, ω1, ω2)dω1dω2

+

l2∫

0

f1(ω2)

[
∂

∂ω1
G(ξ1, ξ2, ω1, ω2)

]

ω1=0

dω2

−
l2∫

0

f2(ω2)

[
∂

∂ω1
G(ξ1, ξ2, ω1, ω2)

]

ω1=l1

dω2(3.1)

+

l1∫

0

f3(ω1)

[
∂

∂ω2
G(ξ1, ξ2, ω1, ω2)

]

ω2=0

dω1

−
l1∫

0

f4(ω1)

[
∂

∂ω2
G(ξ1, ξ2, ω1, ω2)

]

ω2=l2

dω1

where

G(ξ1, ξ2, ω1, ω2) =
4

l1l2

∞∑

n=1

∞∑

m=1

sin(pnξ1) sin(qmξ2) sin(pnω1) sin(qmω2)

p2
n + q2

m

,(3.2)

pn =
πn

l1
, qm =

πm

l2

is the Green function for this boundary value problem.

Method which allows to receive closed form of Green’s function instead of infinite
series (3.2) is explained briefly below.

In addition to the well-known form of Green’s function as double series (3.2, it
exists other form of this function [2]:

G(ξ1, ξ2, ω1, ω2) =
2

l1

∞∑

n=1

sin(pnξ1) sin(pnω1)

pn sh(pnl2)
Hn(ξ2, ω2)(3.3)

=
2

l2

∞∑

m=1

sin(qmξ2) sin(qmω2)

qm sh(qml1)
Qm(ξ1, ω1)

where pn = πn
l1

,

Hn(ξ2, ω2) =

{
sh(pnω2) sh [pn(l2 − ξ2)] l2 ≥ ξ2 > ω2 ≥ 0
sh(pnξ2) sh [pn(l2 − ω2)] l2 ≥ ω2 > ξ2 ≥ 0

Expression for Qm(ξ1, ω1)has the similar form.

Let us use formula (3.3) for obtaining of finite form of Green’s function.

Results [1] allow to use them for derivation of the following expression:
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∞∑

n=1

sh(nβ1)

sh(nβ2)
sin(nβ3) sin(nβ4)

=
1− exp(β1 − β2) cos(β3 − β4)

1− 2 exp(β1 − β2) cos(β3 − β4) + 2 (exp(β1 − β2))
2(3.4)

− 1− exp(β1 − β2) cos(β3 + β4)

1− 2 exp(β1 − β2) cos(β3 + β4) + 2 (exp(β1 − β2))
2

With integration of (3.4) by β1 it is possible to get the following series:

∞∑

n=1

ch(nβ1)

n sh(nβ2)
sin(nβ3) sin(nβ4)

=
1

2
ln

[
exp(2β2) + 2 exp(β1 + β2) cos(β3 + β4)− exp(2β1)

exp(2β2) + 2 exp(β1 + β2) cos(β3 − β4)− exp(2β1)

]
(3.5)

+const(β1)

Its last term does not depend on β1 but may depend on all other variables.
Expression (3.3) may be rewritten with the help of (3.5) in l2 ≥ ξ2 > ω2 ≥ 0 as:

G(ξ1, ξ2, ω1, ω2) =
1

π

∞∑

n=1

sin
(
nπ
l1
ξ1

)
sin
(
nπ
l1
ω1

)

n sh
(
nπ
l1
l2

)
{

ch

[
nπ

l1
(ξ2 − ω2 − l2)

]

− ch

[
nπ

l1
(ξ2 + ω2 − l2)

]}

The same way may be used for derivation of Green’s function inside interval l2 ≥
ω2 > ξ2 ≥ 0.

Thus, application of sum (3.5) allows deriving closed expression for Green’s func-
tion inside listed above intervals. Value of const(β1)is obtained with the help of
Green’s function properties. While analyzing of these expressions, it finally becomes
possible to derive the general expression for Green’s function inside all its range of
definition:

G(ξ1, ξ2, ω1, ω2) =
1

4π
ln
R1R2

R3R4
(3.6)

R1 = f (|ξ2 + ω2| , |ξ1 − ω1|) ; R2 = f (|ξ2 − ω2| , |ξ1 + ω1|)

R3 = f (|ξ2 + ω2| , |ξ1 + ω1|) ; R4 = f (|ξ2 − ω2| , |ξ1 − ω1|) ;

f(a, b) =

[
ch

(
π

l1
(l2 − a)

)
− cos

(
π

l1
b

)][
ch

(
π

l2
(l1 − b)

)
− cos

(
π

l2
a

)]

The similar approach in 3D case leads to the following expression:
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G(ξ1, ξ2, ξ3, ω1, ω2, ω3) =
1

4π
ln

(
R1R2

R3R4

R̃1R̃2

R̃3R̃4

)
(3.7)

R1 = f (|ξ3 − ω3| , |ξ1 + ω1|) R̃1 = f̃ (|ξ3 − ω3| , |ξ2 + ω2|)

R2 = f (|ξ3 + ω3| , |ξ1 − ω1|) R̃2 = f̃ (|ξ3 + ω3| , |ξ2 − ω2|)

R3 = f (|ξ3 − ω3| , |ξ1 − ω1|) R̃3 = f̃ (|ξ3 − ω3| , |ξ2 − ω2|)

R4 = f (|ξ3 + ω3| , |ξ1 + ω1|) R̃4 = f̃ (|ξ3 + ω3| , |ξ2 + ω2|)

f(a, b) =

[
ch

(
π

l1
(l3 − a)

)
− cos

(
π

l1
b

)][
ch

(
π

l3
(l1 − b)

)
− cos

(
π

l3
a

)]

f̃(a, b) =

[
ch

(
π

l2
(l3 − a)

)
− cos

(
π

l2
b

)][
ch

(
π

l3
(l2 − b)

)
− cos

(
π

l3
a

)]

Thus, equation (3.1) rewritten in closed form with the help of (3.6) or (3.7) may be
used for description of distribution of nodes of some grid.

4. Examples. Let us consider some example of application of the obtained so-
lution for generation of grids. On all figures below, the following labels are used:
x1 = X, x2 = Y . It has to be emphasized that shape of 2D domain is the same as in
[1].

On Fig. 1 in [1], one can see the grid generated with the help of Laplace’s equation
in a flat polygon with non-monotone boundaries is shown. It is visible there, that the
grid lines are smooth, and the influence of angular points decreases with moving away
from boundary. It is very difficult to achieve this effect in interpolation methods.
This picture is used as start point for further demonstration.

Illustrations on Fig. 3.1 describe the possibility of above derived results for grid
control inside computational domain. The density of node’s distribution is varied
there proportionally to source term in (2.2). The law of its variation has to be taken
in accordance with requirements to grid from end-user (f. ex., according to properties
of numerical solution). On other hand, this term must guarantee non-degeneration
of MF generated by (2.2). Closed form of generated solution allows fulfilling some
a’priori estimations and satisfies to this requirement.

So, the simple tool for generation of everywhere non-degenerated grids satisfying
to wide range of requirements along boundaries and inside computational domain may
be developed on the base of described above solution.
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Fig. 3.1.


