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THE SOLUTION OF COUPLED HEAT AND MOISTURE
DIFFUSION WITH SORPTION FOR TEXTILES ∗

DALIBOR FRYDRYCH AND PETR RALEK †

Abstract. In this paper, a numerical mathematical model, which deals with the water vapor
sorption mechanisms in fabric, is developed. The model describes and predicts the coupled heat and
moisture transport in textile materials.

Since the flow rate of moisture diffusing through clothing textiles is too small to be measured
directly, the measurement is usually indirect and the interaction between thermal and moisture
transport is not considered. In this study, a mathematical model was introduced to describe the
moisture migration and thermal transport through porous textiles in order to evaluate the thermal
clothing comfort and the interaction between heat and moisture transportation.

The model is based on the energy and moisture conservation equations during the transportation.
For numerical solution, the finite elements method is used. The results are enclosed at the end.
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The Solution of Coupled Heat and Moisture Diffusion with Sorption for Textiles

1. Introduction. The mathematical model is introduced in this study to de-
scribe the moisture migration and thermal transport through porous textiles in order
to evaluate the thermal clothing comfort and the interaction between heat and mois-
ture transportation.

Comparing to the others, mostly one–dimensional models, our model goes much
further and takes the structure of the textile fabric into account. It allows the study
of the influence between the textile fabric structure and the thermal closing comfort
and gives new possibilities for the design process of new textiles.

2. Problem formulation. Heat and mass transportation parameters and the
distribution of moisture and temperature within porous textiles are based on the
energy and moisture conservation equations during the transportation.

The transfer is described by partial differential equations [1], [3]
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where are: T temperature, Ca water vapor concentration in air, Cf water vapor con-

centration in fiber, t time, cv volumetric heat capacity, λ heat of sorption or adsorption
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of water vapor by fiber (it gives information on interaction forces between the water
vapour molecules and the sorbent surface–binding energy), K thermal conductivity,
ε porosity of fiber, Da diffusion coefficient of water vapor in air, τ effective tortuos-
ity (it is related to the hindrance imposed on diffusing particle by the fibers), C100

a

water vapor concentration for 100% relative humidity (RH) in air, C100
f water vapor

concentration for 100% RH in fiber and γ is a general function, for example [1]
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The assumption of instantaneous thermal equilibrium between the fibers and the air
in the inter–fiber space does not therefore leads to an appreciable error. Equations
(2.1) and (2.2) are not linear and they contain three unknowns T , Ca and Cf . The
equation (2.3) was derived by Henry [4] to obtain an analytical solution by assuming
Cf to be linearly dependent on T and Ca, and also that fibers reach equilibrium with
adjacent air instantaneously.

The set of boundary conditions (BC) is added, where Dirichlet BC are

T (x, t) = TD(t) x ∈ Γ1 in time (0, t∗),(2.4)

Ca(x, t) = CaD(t) x ∈ Γ1 in time (0, t∗).

Neumann BC are

∂T

∂x
(x, t).n = α(t), x ∈ Γ2 in time (0, t∗),(2.5)

∂Ca
∂x

(x, t).n = β(t), x ∈ Γ2 in time (0, t∗).

Newton BC are

∂T

∂x
.n + σT (t)(T − TD(t)) = 0 σT (t) > 0, x ∈ Γ3 in time (0, t∗),(2.6)

∂Ca
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.n + σCa(t)(Ca − CaD(t)) = 0 σCa(t) > 0, x ∈ Γ3 in time (0, t∗).

For initial conditions (IC) the constant functions [2] are usually chosen

T (x, 0) = TD for x ∈ Ω,

Ca(x, 0) = CaD for x ∈ Ω,(2.7)

Cf (x, 0) = CfD for x ∈ Ω.

2.1. Weak formulation. To use the finite element method, the weak formula-
tion has to be derived. We discretize the problem in the space variable x = {x, y, z}.
Let be H0(Ω) = {f ∈ W 1

2 (Ω), f |Γ = 0} the space of testing functions. Further,
we denote the scalar products as (ϕ, ψ) =

∫
Ω
ϕψdΩ, 〈ϕ, ψ〉 =

∫
Γ
ϕψdΓ. We mul-

tiply equations (2.1), (2.2) and (2.3) by testing function w ∈ H0(Ω) and integrate
them over Ω. Green formula and substitution of boundary conditions gives integral
identities
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We solve the problem in time interval I = 〈0, t∗〉. Let us denote T ∗, C∗a , C
∗
f ⊂ AC(I,W 1

2 (Ω))
be the function fulfilling the Dirichlet BC (2.4). Let

T (x, t) = T ∗(x, t) + T0(x, t),

Ca(x, t) = C∗a(x, t) + Ca0(x, t),

Cf (x, t) = C∗f (x, t) + Cf0(x, t),

where T0, Ca0, Cf0 ∈ AC(I,H0(Ω)). Then functions T,Ca, Cf are the weak solution
of (2.1), (2.2) and (2.3) with boundary conditions (2.4)-(2.6) and initial conditions
(2.7) in time interval I , if they fulfill the identities (2.8) for arbitrary w ∈ H0(Ω).
Existence of integrals in (2.8) is allowed by finiteness of functions ε, τ , Da, K a γ.

2.2. Spatial discretization. For spatial discretization, we use tetrahedrons (see
Fig. 2.1) with linear base functions. Area Ω is then approximated by the set Ωh,

Fig. 2.1. Element of discretization

Ωh =
⋃

e∈Eh
e,

where Eh is the set of all discretization nodes. On every simplex e with nodes
(s1, s2, s3, s4), four base functions are established, wi = αi0 + αi1x1 + αi2x2 + αi3x3,
i = 1, 2, 3, 4. They fulfill the condition wi(s

j) = δij . We look for approximation of
weak solution in the form (r is number of nodes)

T h(x, t) =

r∑

i=1

T i(t)wi(x),

Cha (x, t) =

r∑

i=1

Cia(t)wi(x),(2.9)

Chf (x, t) =

r∑

i=1

Cif (t)wi(x).
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Coefficients T i(t), Cia(t), Cif (t) are values of unknowns at the nodes of discretization
in time t. We substitute approximations (2.9) into identities(2.8) and ask for their
fulfilling for all base functions wj , j ∈ r̂. System of ordinary differential equations
results, having the block structure
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where
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[T]i = T i(t), [Ca]i = Cia(t), [Cf ]i = Cif (t).

Values of functions Da, K, γ in given time are chosen to be piecewise constant on each
element (in the manner described further). Values of functions ε, τ are also chosen
to be piecewise constant on each element, but as material characteristic, independent
on time.

3. Numerical model. System (2.10) with initial conditions (2.7) can be solved
e.g. by the Euler method. Its advantage is, that it can be used for case, when the
system has coefficients depending on unknown quantities (Da, K, γ).

3.1. Time discretization. We use the implicit scheme for approximation of
time derivatives,
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which provides sufficient numerical stability. Let us rewrite the system (2.10) more
simply,

DẊ + D̃X = R,
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Values Da, K, γ in n-th time step were implicitly chosen by substituting the guess
X̂(n+1) in time step (n + 1). Matrix D̃ and right hand side R are time-dependent,
more accurately, they depend on values Da, K, γ, which consist in X. For n-th time
step, they look

D̃(n) = D̃(X̂(n+1)), R(n) = R(X̂(n+1)).

Consequently, the problem

D
X(n+1) −X(n)

∆t
+ D̃(n)X(n+1) = R(n),

was solved and the variation between the solution X (n+1) and the guess X̂(n+1) was
watched. For the large variation, the solution X (n+1) was used as new estimate X̂(n+1)

(for first iteration we used X̂(n+1) ≡ X(n)). This process was repeated several times
and until we got small variation. Then the new initial problem for time step (n+ 2)
was solved.

In particular iteration in nth time step the linear system is solved,

(D+ ∆tD̃(n))X(n+1) = R(n)∆t+ DX(n).

If we denote

R(n)∆t+ DX(n) = R̃(n),

the linear system can be written in block structure,



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T 0 CT
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Fig. 3.1. Full mesh and mesh without air elements

4. Discussion on the results. For qualitative examination of clothing comfort,
the process of the ”dressing–up”, was chosen. Due to the limited space of the article,
we don’t present here all results, which describe the heat and moisture penetration in
the textile, but only the heat field and heat flow field.
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From the textile fabric sample, the smallest volume, which describes its geomet-
rical structure, is chosen. Textiles are usually strong surface structures. Therefore,
we can use symmetry (see Fig. 3.1) for the process of heat and moisture transport.
Results found on the reference volume form the basis for the models, describing the
global behavior of textiles.

4.1. Description of the modelled process. At the beginning, the textile
fabric is placed in environment with temperature T = 20◦C and relative humidity
(RH) Ca = 50%. These values are the initial values of the model (see equation (2.7)).
The process of ”dressing–up” is performed by the change of boundary condition on the
above (inside) boundary. From the point of view of control theory, it is the response to
the unit jump. Textile fabric lays free on the human body with temperature T = 36◦C
and relative humidity (RH) Ca = 97%.

The results, describing arising process, are given on the pictures Fig. 5.1, Fig. 5.2,
Fig. 5.3 and Fig. 5.4. Pictures in the left column (sample No. 1) are results for the
textile fabric, which absorbs moisture, but does not produce heat of sorption. In the
right column (sample No. 2), there are results for the textile fabric with same geo-
metrical characteristics, where absorbing of moisture generates the heat of sorption.
The typical material with this behavior is sheep wool. For better comparison, sample
No. 1 is also made from sheep wool, but its heat sorption parameter was set zero. Due
to the progressive moisture transport in time, the temperature of the sample No. 2
increases. The generated heat of sorption gives it.

After the transient performances, temperature and heat flow stabilize (this sta-
bilization has asymptotic behavior in time). Temperature and the heat flow are the
same for both samples (these results are not interesting for us and are not presented
here). For both surfaces, the sums of heat flows are computed. From these values
and from the progression of heat flow, the clothing comforts of the textile fabrics
can be determined. The clothing comfort is subjective parameter, which describes
the feelings of human body after dressing the textile fabric - how long persist the
uncomfortable feelings (feelings of cold) and how strong they are.

It seems to be very interesting, but difficult problem to set some simple criterion of
textile fabric scaling according to the computed parameters. Naturally, the criterion
should be to minimize some functional, but the creation of this functional will be
difficult (many attributes of textile fabric are subjective).

5. Conclusion. In the paper, the model for solving the problem of coupled heat
and moisture diffusion with sorption in textile fabric is introduced. The model works
in the area of woven fabrics, knitted fabrics or non-woven fabrics. The fabrics can
be non-absorbing (polypropylene) or absorbing (wool) - in this case heat of sorption
or adsorption of water vapor can be taken into account.

Model parameters - volumetric heat capacity, thermal conductivity and heat of
sorption or adsorption of water vapor are assumed to be nonlinear functions, as well
as the relationship describing the rate of water content change in the fibers.

The results from the model allow textile designers to have new insight in mech-
anism of heat and moisture transport in textile fabrics. The results can be applied
in the effective, cheap and fast designing process of new textile fabrics with better
customer characteristics.
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Fig. 5.1. Temperature in the textiles (woven fabric) at time t = 30s. Sample No.1. (left/lower
column) without heat of sorption; sample No.2. (right/upper column) with heat of sorption.
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Fig. 5.2. Temperature in the textiles (woven fabric) at time t = 100s. Sample No.1. (left/lower
column) without heat of sorption; sample No.2. (right/upper column) with heat of sorption.
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Fig. 5.3. Heat flow in the textitiles (woven fabric) at time t = 30s. Sample No.1. (left/lower
column) without heat of sorption; sample No.2. (right/upper column) with heat of sorption.
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Fig. 5.4. Heat flow in the textitiles (woven fabric) at time t = 100s. Sample No.1. (left/lower
column) without heat of sorption; sample No.2. (right/upper column) with heat of sorption.


