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FINITE ELEMENT SIMULATION OF A DROPLET IMPINGING A
HORIZONTAL SURFACE

SASHIKUMAAR GANESAN∗ AND LUTZ TOBISKA†

Abstract. This paper presents the shape deformation of a single two dimensional spherical
liquid droplet on a horizontal surface. The mathematical model can be defined by the time-dependent
Navier-Stokes equations in a time-dependent domain. The model has to be completed by the free
boundary condition on the fluid-gas interface and the Navier-slip boundary condition on the fluid-
solid interface, respectively. A second order finite element discretization in space is combined with a
fractional θ-scheme to solve this free surface problem. The Arbitrary Lagrangian Eulerian method is
used to handle the time dependent domain. Replacing the curvature term on the free surface by the
Laplace-Beltrami operator we are able to include the contact angle explicitly in the finite element
formulation. The numerical results show that the shape deformation is influenced by the impact
velocity, the droplet diameter, the surface tension and material properties.
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1. Introduction. Deformation of a droplet on a horizontal surface has been
studied for over a century [9] not only of physical interest but also due to its industrial
applications such as spray cooling, spray forming, spray coating, ink-jet printing, fuel
injecting and etc. Fluid flow simulation of these type of models are more challenging
than the CFD simulation in a fixed domain with given velocities at the boundaries
because of the no-slip condition on solid surface, deforming domains and dynamic
wetting line. Each of the above aspect is complicated.

Using the usual no-slip boundary condition on the solid-liquid interface leads to
an unsatisfactory model, because the conventional fluid mechanical analysis indicates
that exceedingly high stress occur in the neighbourhood of the contact line [7, 11,
12, 19]. Different versions of boundary conditions are discussed in [8]. Among those,
Navier-slip condition is widely accepted. The difficulty in this condition is to provide
an appropriate value for the slip coefficient. Often, it is considered as a constant but
more complicated nonlinear forms are also used in molecular dynamics, see e.g. [20].
We replace the curvature term on the free surface by the Laplace-Beltrami operator.
This technique was successfully applied in the finite element context, see e.g [1, 2, 15].
By using this relation we are able to take into consideration the contact angle in the
finite element model which is quite important for including surface properties of the
solid wall.

For handling time dependent domains, different techniques has been proposed in
the literature. The oldest approach is the Marker and Cell (MAC) method, in which
marker particles are used to identify each phase. In the Volume of Fluid (VOF)
method, a marker function representing the fraction of the fluid in a cell is used. In
the considered case of application a precise implementation of the force balance at the
free surface including in particular the influence of surface tension is important. It
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is difficult to implement the corresponding boundary condition within the framework
of the MAC and VOF method due to a missing sharp interface reconstruction. A
widely used and very flexible method is the Level Set method (LS) [18], in which, the
interface is represented as an implicit smooth level set function. It allows topological
changes of the domain but the discretization of the equation to advect the level set
function increases the computational cost and causes numerical errors. These errors
influence the mass conservation even though the incompressibility condition is taken
into account. To avoid the problems described above we use alternatively the Arbi-
trary Lagrangian Eulerian approach (ALE) [15, 16]. In this method the grid points
can move independent of the fluid motion. In particular, the inner grid points can be
displaced in an arbitrary prescribed way to get a proper mesh quality.

On the real surface we have to face the contact angle hysteresis. Let the advanc-
ing contact angle θadv be the angle just before the spreading starts and the receding
contact angle θrec be the angle just before the recoiling starts. Usually θadv is signifi-
cantly higher than θrec. The difference is called the contact angle hysteresis. Various
explanations for the occurrence of the hysteresis have been given in the literature [5].

The paper is organised as follows. Section 2 presents the overview of the problem
and the governing equations of the model. Section 3 deals with the time discretization
schemes, finite element formulation, ALE approach to handle the time-dependent
domains, automatic mesh update and remeshing schemes. Results of numerical tests
are summarised in Section 4.

2. Mathematical model.

2.1. Model problem. We consider the two-dimensional liquid droplet imping-
ing on a horizontal solid surface, starting at an instant t = 0 when the droplet comes
into contact with the solid surface. We proceed until the prescribed time is reached
or the droplet comes to rest after the spreading and recoiling processes completed.
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Fig. 2.1. Droplet Deformation.

In Fig.2.1, (1) and (2) are the fluid-gas (ΓF ) and fluid-solid (ΓS) interfaces,
respectively, c is the dynamic wetting point. (3), (4) are unit tangential (τF ), unit
outward normal (νF ) vectors on ΓF , and (5), (6) are unit tangential (τS), unit outward
normal (νS) vectors on ΓS .

2.2. Governing Equations. The two-dimensional fluid flow within the con-
sidered bounded domain Ω(t), t ∈ [0, T ], is governed by the two-dimensional time-
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dependent incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u− 1

ρ
∇ · σ(u, p) = f in Ω(t)

∇ · u = 0 in Ω(t)
(2.1)

where u = (u1, u2) denote the velocity, p the pressure, ρ the density, and f = (f1, f2) =
(0,−g) the body force with the gravity constant g. The stress tensor σ is given by

σ(u, p) = 2µD(u)− pI, D(u) =
1

2
(∇u +∇uT ) (2.2)

with the dynamic viscosity µ and the identity tensor I.

2.3. Initial and Boundary Conditions. At time t = 0 we assume that the
droplet is of spherical shape with radius r0

Ω(0) =
{
x ∈ R2 : x2

1 + (x2 − r0)2 < r2
0

}

and has the initial velocity

u(0) = (0,−u0) (2.3)

where u0 denotes the pre impact velocity. Along the liquid-gas interface ΓF the
boundary conditions

νF · σνF = −(γκ+ p0), τF · σνF = 0 (2.4)

are applied. Here, σνF denotes the normal component of the stress tensor (with respect
to ΓF ), γ the surface tension, κ the curvature, and p0 the atmospheric pressure.
Further, the kinematic boundary condition

u · νF = VΓF on ΓF (t) (2.5)

holds, i.e the normal component of the velocity at the liquid-gas interface corresponds
to the interface velocity VΓF . Along the liquid-solid interface ΓS the Navier-slip
boundary condition

u · νS = 0 u · τS = − 1

β
(τs · σνs) (2.6)

is used, where σνs is the normal component of the stress tensor (with respect to ΓS)
and β denotes the so called slip coefficient. For the simplicity we consider it as a
constant.

2.4. Dimensionless Form. We choose as the reference length d0, as the refer-
ence velocity u0, i.e., the diameter and the pre impact velocity of the droplet at t = 0,
respectively. Introducing the dimensionless quantities

ũ =
u

u0
, p̃ =

p− p0

ρu2
0

, t̃ =
tu0

d0
, x̃ =

x

d0
, σ̃ =

σ

ρu2
0

and omitting the tilde afterwards, we obtain the problem in the dimensionless form

∂u

∂t
+ (u · ∇)u−∇ · σ(u, p) = f , ∇ · u = 0, in Ω(t)

τF · σνF = 0, νF · σνF = − 1

We
κ on ΓF (2.7)

u · νS = 0, τs · σνs = − β

ρu0
u · τs on ΓS
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where the stress tensor is given by

σ(u, p) =
2

Re
D(u)− pI, (2.8)

and

Re =
ρu0d0

µ
, We =

ρu2
0d0

γ
, F r =

u2
0

d0g
(2.9)

denote the Reynolds number, the Weber number, and the Froude number. Now, the
initial condition becomes u(0) = (0,−1) and the right hand side f = (0,−Fr−1).

3. Numerical Schemes. The starting point of formulating a finite element
method is a weak formulation of the problem (2.7). We discretize the weak problem
in time and then in space.

3.1. Weak Formulation. In this section we use the short notation Ω for Ω(t).
Let L2(Ω) and Hm(Ω), m ≥ 1 be the usual Lebesgue and Sobolev spaces. To include
the boundary condition u · νS = 0 on ΓS in the weak formulation we define

V := {v ∈ H1(Ω)2 : v · νS = 0}

and Q = L2(Ω) as the velocity and pressure spaces, respectively.
The weak formulation is obtained by multiplying (2.7) with a test function v ∈ V

and integrating over Ω. We restrict our derivation on the stress tensor term and han-
dle the remaining terms in the usual way. Applying the Gaussian theorem we get for
the stress tensor

-
∫

Ω
∇ · σ(u, p) · v dx

=
∫

Ω σ(u, p) : ∇v dx−
∫

Γ v · σ(u, p)ν dγ

=
∫

Ω
1
2σ(u, p) : ∇v dx+

∫
Ω

1
2σ

T (u, p) : ∇v dx −
∫

Γ
v · σ(u, p)ν dγ

=
∫

Ω σ(u, p) : D(v) dx −
∫

Γ v · σ(u, p)ν dγ

=
2

Re

∫

Ω

D(u) : D(v) dx −
∫

Ω

p∇ · v dx−
∫

Γ

v · σ(u, p)ν dγ .

Note that we have used the symmetry of the stress tensor σ(u, p). Now we split the
boundary integral into integral over ΓS and ΓF , i.e.,

∫
Γ

v · σ(u, p)ν dγ =
∫

ΓS
v · σ(u, p)νS dγS +

∫
ΓF

v · σ(u, p)νF dγF . (3.1)

For the first term on the right hand side in (3.1) we decompose v as v = (v · νS)νS +
(v · τS)τS , use (2.6) and v ∈ V , to get∫

ΓS
v · σ(u, p)νS dγS

=
∫

ΓS
(v · τS)τS · σ(u, p)νS dγS +

∫
ΓS

(v · νS)νS · σ(u, p)νS dγS

= −
∫

ΓS
β(u · τS)(v · τS) dγS .

(3.2)
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For the second term in (3.1) we decompose v as v = (v · νF )νF + (v · τF )τF and
use (2.4), to get∫

ΓF
v · σ(u, p)νF dγF

=
∫

ΓF
(v · τF )τF · σ(u, p)νF dγF +

∫
ΓF

(v · νF )νF · σ(u, p)νF dγF

= −
∫

ΓF
(v · νF )

κ

We
dγF .

(3.3)

Now we replace the curvature term −κνF by the Laplace-Beltrami operator and in-
tegrate it by parts

−
∫

ΓF
v · νF

κ

We
dγF =

1

We

∫

ΓF

∆idΓF · v dγF

=
1

We

(
−
∫

ΓF

∇idΓF : ∇v dγF + (γν · ∇idΓF ) · v
∣∣∣
cl

cr

)

=
1

We

(
−
∫

ΓF

∇idΓF : ∇v dγF + γν · v
∣∣∣
cl

cr

)

since γν ·∇idΓF = γν . Here, γν denotes the outer normal at the wetting points cr
and cl with respect to ΓF . We decompose v in the second term as v = (v · νS)νS +
(v · τS)τS and use the condition v · νS = 0 on ΓS to obtain

−
∫

ΓF
v · νF

κ

We
dγF =

1

We

(
−
∫

ΓF

∇idΓF : ∇v dγF + (γν · τS)(v · τS)
∣∣∣
cl

cr

)

=
1

We

(
−
∫

ΓF

∇idΓF : ∇v dγF + cos(θ) v · τS
∣∣∣
cl

cr

)

(3.4)
where the restriction of the mapping idΓF : R2 → R2 onto ΓF is the identity.

Now the weak form of (2.7) reads:

Find (u, p) = (u(t), p(t)) ∈ V ×Q such that for all (v, q) ∈ V ×Q such that
(
∂u

∂t
,v

)
+ aD(u,v) + b(u,u,v) + e(u,v) + d(u,v) − c(p,v) = (f,v) + h(θ,v)

c(q,u) = 0
(3.5)

where

aD(u,v) =
2

Re

∫

Ω

D(u) : D(v) dx, b(û,u,v) =
∫

Ω
(û · ∇)u · v dx,

e(u,v) =
1

We

∫

ΓF

∇idΓF : ∇v dγF , d(u,v) = β
ρu0

∫
ΓS

(u · τ)(v · τ) dγS ,

c(q,v) =
∫

Ω q∇ · v (f,v) =
∫

Ω f · v dx,

h(θ,v) =
1

We
cos(θ) v · τS

∣∣∣
cl

cr
.
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Remark : 3.1.1 For a contact angle θ = π/2 the linear form v → h(θ,v) vanishes
and (2.7) is well defined. In all other cases v has to belong toH1+ε, ε > 0, to guarantee
the continuity of that linear form.

3.2. Temporal discretization.

3.2.1. Time stepping techniques. Let 0 = t0 < t1 < · · · < tN = T be a
decomposition of the considered time interval. Since our domain Ω = Ω(t) is time-
dependent, the corresponding spaces V , Q, depend also on time. We shall use the
notation V n and Qn to indicate this dependency. Define τn = tn+1 - tn. We (semi-)
discretize (3.5) in time by using the integration formula

∫ tn+1

tn

ϕ(t) dt ≈ τn[(1− ϑ)ϕ(tn) + ϑϕ(tn+1)].

This results in the sequence of generalised stationary Navier-Stokes problems:

Given un ∈ V n, pn ∈ Qn, find u = un+1 ∈ V n+1, p = pn+1 ∈ Qn+1 such that

[1 + ϑ N(u)](u,v) - τn(p,∇ · v) = [1 - (1− ϑ)N(un)](un,v)
+ τn(fn+1,v) +c(θ,v)

(∇ · u, q) = 0.
(3.6)

Choosing ϑ as 0, 1, or 0.5, we obtain the forward Euler, the backward Euler or the
Crank- Nicolson scheme, respectively. Here and in the following, we use the compact
representation

N(û)(u,v) = aD(u,v) + b(û,u,v) + e(u,v) + d(u,v) (3.7)

3.2.2. Fractional ϑ scheme. The Euler schemes are of first order and the
Crank-Nicolson scheme is of second order. Unfortunately, the latter one is not strongly
A-stable. That means this scheme may lead to numerical oscillations in the problem
with rough initial data or boundary conditions. An alternative to the one-step ϑ
schemes is the fractional step ϑ scheme proposed first in [4] as an operator splitting
scheme. It combines three first order one step schemes in a clever way to get a second
order strongly A-stable scheme. For more details we refer to [15, 17, 21].

Let ϑ = 1-
√

2
2 , ϑ′ = 1 − 2ϑ, η =

ϑ′

1− ϑ and η′ = 1 − η. We split each τn into

three subintervals as (tn, tn1), (tn1 , tn2) and (tn2 , tn+1). Where tn1 = tn + τnϑ and
tn2 = tn+1 − τnϑ. The fractional ϑ scheme for (3.5) in the time interval (tn, tn+1)
consists of three steps.

Step 1. Find u = un+τnϑ, p = pn+τnϑ in V n+τnϑ × Qn+τnϑ such that for all (v, q)
in V n+τnϑ × Qn+τnϑ

[1 + θ1 N(u)](u,v)|Ω(tn) - ϑτn(p,∇ · v) = [1 - θ2N(un)](un,v)
+ ϑτn(fn+τnϑ,v) + ϑτnc(θ,v)

(∇ · u, q) = 0
(3.8)

where θ1 = τnϑη, θ2 = τnϑη
′. Similarly in Step 2 and 3 we find (un+1−τnϑ, pn+1−τnϑ)

and (un+1, pn+1) belonging to the spaces defined on the domains at time tn2 and tn+1.
The difficulty in the time discretization (3.8) is that we are looking the solution de-
fined on Ω(tn1) from a solution defined on Ω(tn). In the next subsection we overcome
this difficulty by using Arbitrary Lagrangian Eulerian method.
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3.2.3. Arbitrary Lagrangian Eulerian (ALE) Approach. Let At be a fam-
ily of mappings, which at t ∈ [0,T] maps a point Y ∈ Ω(tn) of a reference domain
onto the point x of the current domain Ω(tn+1):

Atn+1 : Ω(tn)→ Ω(tn+1), Atn+1(Y ) = x(Y, tn+1). (3.9)

We assume that Atn is homeomorphic for n = 1, 2, . . . , that is Atn is invertible
with continuous image. Further, we assume that the mapping is differentiable almost
everywhere in [0, T]. Let Y ∈ Ω(tn) be ALE coordinate and x= x(Y, tn+1) be spatial or
Eulerian coordinate. In order to explain the ALE approach we consider for simplicity
a first order time evolution problem.

Find u ∈ V n+1 such that

∂u

∂t
+ L(u) = 0 (3.10)

with appropriate boundary conditions. Here, L denotes a differential operator. To
find an equivalent form for un+1◦Atn+1 , we apply the chain rule to the time derivative
in the ALE frame and obtain

∂u

∂t

∣∣∣
Y

=
∂u

∂t

∣∣∣
x

+
∂x

∂t

∣∣∣
Y
· ∇xu

=
∂u

∂t

∣∣∣
x

+ wn · ∇xu
(3.11)

We see that using the ALE formulation we are getting an additional convective
term due to the domain movement which requires the domain velocity w in each time
step. For more details on derivation and different forms we refer to [16].

For (3.6) the ALE formulation can be obtain in the same way. The only change
is an additional convective term, i.e., we have to replace (3.7) by

N(û)(u,v) = aD(u,v) + b((û−wn),u,v) + e(u,v) + d(u,v) (3.12)

3.2.4. Handling the curvature term. The boundary integral term e(u,v) in
(3.5) can be treated as fully explicit, fully implicit or semi-implicit. Numerical exper-
iments [1] with the explicit form show that the resulting scheme is only conditionally
stable. The implicit form is too complicated because we need in advance the domain
Ω(tn+1) which is unknown. So, we consider the semi-implicit form as proposed in
[1, 15]

∫
ΓF (tn)

∇idΓF (tn+1) : ∇v dγF ≈
∫

ΓF (tn)
(∇idΓF (tn) + τn∇un+1) : ∇v dγF

Now, only the term
∫

ΓF (tn)∇un+1 : ∇v dγF is unknown and will be shifted to the

left hand side of the equation leading to a better stability due to its symmetry and
positive semi-definiteness. In [1] the new position Xn+1 of the boundary nodes are
obtained by moving it in the normal direction as

Xn+1 = Xn + τn(νF · un+1(Xn))νF . (3.13)

This may not be true in the neighbourhood of the wetting points. Alternatively a
generalised elevation equation for free boundary displacement was used in [3]. In this
case the update form is given by

Xn+1 = Xn + Φ(Xn)e(Xn) (3.14)
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where Φ(Xn) and e(Xn) are the displacement and prescribed direction of Xn. In our
numerical calculation we used the simple form that if un+1 is known then we get the
new position of the boundary nodes as

Xn+1 = Xn + τnun+1(Xn). (3.15)

For simplicity, the second term in the equation (3.4) has been discretized explicitly.

3.3. Discretization in space by Finite elements. Theoretical results for fi-
nite element discretizations of (2.1) in a fixed domain Ω = Ω(t) for Dirichlet type
boundary conditions u |∂Ω= 0 can be found in many textbooks, see for example [10].
To guarantee the stability and high accuracy we prefer inf-sup stable elements of at
least second order. We prefer triangular elements, the obvious reason is that they will
approximate the complex and time dependent domains more accurately than quadri-
lateral elements. The popular triangular element is the Taylor Hood element, i.e.,
continuous piecewise quadratic approximations for the velocity and continuous piece-
wise linear pressures. Using continuous elements for the pressure space approximation
we can guarantee the mass conservation only over patches of elements. Discontinuous
elements provides the mass conservation locally i.e., element by element. Therefore,
we prefer the discontinuous piecewise linear element for approximating the pressure
space. In order to satisfy the inf-sup condition we need to add to the usual piecewise
quadratics a cubic bubble function. The inf-sup stability of this element has been
shown in [6].

3.4. Mesh update and remeshing. As we discussed in Section 3.2.4 we get the
new position of the boundary nodes in each time step. According to that we have to
move the interior nodes also. We can achieve this by remeshing the domain according
to the new boundary points and project the solution from the old domain to the new
one in each time step. This procedure obviously increases the computational costs and
also causes projection errors. To avoid as much as possible remeshing, we combine
the elastic solid technique to find the new position of the interior nodes and remesh
the domain only when the distortion of the finite element become exceedingly large.
For elastic solid technique we follow the ideas given by Matthies [15]. We remesh the
domain if the maximum angle of any element exceeds 160◦ or a liquid-gas interface
node reaches the liquid-solid interface. In the later case remeshing is unavoidable
since we have to change the boundary description of the node. We implemented the
above techniques in the finite element package MooNMD [13].

Remark 3.4.1. Let Xn(kΓF ) be a position of a node k on ΓF which is moving
towards ΓS at time tn. Let ln be the gap between Xn(kΓF ) and ΓS in the moving
direction of Xn(kΓF ) . In our computations we change Xn+1(kΓF ) as Xn+1(kΓS ) if
(Xn+1(kΓF )−Xn(kΓF )) ≥ ln by remeshing the domain. But (Xn+1(kΓF )−Xn(kΓF ))
must be less than or equal to ln since u · νS = 0 on ΓS and it is called contact
condition. The techniques discussed in section 3.2.4 to obtain the new position Xn+1

may violate the contact condition. To overcome this difficulty we have to use an
additional boundary condition as used in elasticity for contact problems [14].

4. Results. In order to validate the model presented in the previous sections, we
performed the computations with a variety of parameters. A water droplet of diameter
d0 = 0.1 mm was considered to impinge the stationary solid surface with a velocity u0

= 1 m/sec. For water, the surface tension σ = 0.073 N/m, density ρ = 1000 kg/m3,
kinematic viscosity ν = µ/ρ = 10−6 m2/sec were used. The dimensionless values for
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the above considered parameters are Re = 100, We = 1.4 and Fr = 1020. We take

the friction coefficient term
β

ρu0
= 104. Figure 4.1 represents the sequence of frames

corresponding to the above values in different instances of the impinging process.

Fig. 4.1. Water droplet deformation with Re = 100, We = 1.4 and Fr = 1020.

Figure 4.2 shows the isolines of the first velocity component u1 in the above
spreading process at different instances. Figure 4.3 shows the isolines of the second
velocity component u2.

Fig. 4.2. Isolines of the velocity component u1

Fig. 4.3. Isolines of the velocity component u2

To study the influence of the impact velocity in spreading process we define the
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spreading factor (L) as the ratio between wetting length and initial diameter d0.
Figure 4.4 represents the spreading factors of a water droplet with diameter d0 = 0.1
mm for different impact velocities. In which the wetting length increases if the impact
velocity increases. To show the mass conservation of this simulation we define the
mass difference factor (E) as the ratio between measΩ(t)−measΩ(0) and measΩ(0).
Figure 4.5 shows the mass conservation of the droplet for different impact velocities.
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Fig. 4.4. Spreading factor (L) of the
droplet with d0 = 0.1 mm, u0 = 0.5, 1, 2 m/s
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Fig. 4.5. Mass conservation of the
droplet with d0 = 0.1 mm, u0 = 0.5, 1, 2 m/s

Remark 4.1.1. In our model, solid surface properties can be taken into con-
sideration by choosing the friction coefficient β and the contact angle θ. Different
formulas for determining the contact angle have been used, in particular a fixed static
contact angle of θstat = 105◦ and a dynamic contact angle depending on the tangen-
tial velocity near the wetting point. In our first tests we found almost no dependency
of the results on the contact angle. A reason may be the d-term in the equation
(3.5) dominates the h-term during the spreading process. However, further studies
are needed to investigate this phenomenon in more detail.
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