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INFLUENCE OF MESH GEOMETRY TO NUMERICAL DIFFUSION
IN UPWIND SCHEME FOR POROUS MEDIA SOLUTE TRANSPORT∗

MILAN HOKR† AND JIŘÍ MARYŠKA†

Abstract. We present results of experiments showing the character of numerical diffusion in
solute transport model with explicit upwind finite volume scheme, under two influences: perturbation
of mesh (small random change of node positions) and angle between fluid velocity and characteristic
directions of the mesh. We observe situations, where the numerical diffusion in 2D can be identified
with longitudinal and transversal hydrodynamic dispersion coefficients, used for the porous media
transport description. In these cases, the numerical error corresponds to parameter uncertainty,
which can be a reason why a software with basic numerical methods can produce results satisfactory
in the application.
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1. Introduction. Solution of advection-diffusion problems is one of the chal-
lenges for numerical mathematics. Although many sophisticated methods exist, we
cannot in general avoid one of the characteristic difficulties – artificial oscillations or
numerical diffusion [5], namely for the advection-dominated problems.

Here we consider the context of porous media solute transport, governed by the
advection-diffusion/dispersion equation for unknown concentration c(~x, t), function of
space and time (see e.g. [1]):

∂c

∂t
+∇ · (c~v)−∇ · (D∇c) =

1

n
(c∗q+

s + cq−s ) ,(1.1)

where ~v is the fluid velocity, D(~v) is the hydrodynamic dispersion tensor, n is the
porosity, qs is fluid source/sink intensity, and c∗ is the given concentration in the
injection wells (sources). The hydrodynamic dispersion includes the molecular dif-
fusion and mixing of variably concentrated solution in pores. In contrast with pure
molecular diffusion, the hydrodynamic dispersion is anisotropic in principle.

In the porous media problems, the identification of dispersion coefficients is usu-
ally difficult and often the achieved accuracy is only the order of magnitude [8].
Typically, the problem is advection dominated, which is expressed in terms of Péclet
number:

Pe =
|~v|d
|D| � 1 ,(1.2)

where d is a characteristic length of the solved problem. Thus there are less require-
ments of accuracy of numerical processing of hydrodynamic dispersion.

The classical solute transport codes used by hydrogeologists mostly use the basic
numerical methods for calculating the advection and hydrodynamic dispersion process
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(e.g. the US Geological Survey models MF2K-GWT, i.e. the MODFLOW with
simple particle tracking method on finite-difference mesh, or SUTRA using the finite
elements with an optional upwinding). The approaches how to manage with the
numerical diffusion mentioned in the user manuals are typically two: to be careful to
have sufficiently fine mesh and/or to use the diffusion-dispersion coefficient reduced
by the expected numerical diffusion [8]. On the other hand, no tools how to recognize
the amount of numerical diffusion in complicated geometry are offered.

Since the origin of the numerical diffusion is in discretisation of the advective
term, it appears to be useful to observe the behaviour of numerical methods for
pure advection in the context of advection-dispersion problems. For one-dimensional
uniform problems, the expression of the numerical diffusion by means of diffusion
coefficient in the “equivalent” advection-diffusion equation is well known (the 2nd

order error in the first order approximation) [2, 6].
On the other hand, the straightforward theoretical expression is possible only lo-

cally for one node or element in more dimensional non-uniform meshes. As the first
step to study the global description of numerical diffusion in more dimensions, we pro-
pose several numerical experiments to verify a possibility to represent the numerical
diffusion by means of equivalent physical parameters – the porous media hydrody-
namic dispersion (the anisotropic process with two diffusion/dispersion coefficients in
two directions, longitudinal and transversal with respect to the water velocity [8]).
It is not a-priori clear if such a representation is possible, but it appears to be very
illustrative in the context of porous media transport – we express the numerical error
in terms of physical parameter uncertainty.

The study to find a relation between numerical diffusion and hydrodynamic dis-
persion is also motivated by a technique [7] how to employ the numerical diffusion
as a part of the advection-dispersion problem solution in a specific 2D case: with
the streamline-oriented mesh, the longitudinal dispersion is represented (replaced) by
numerical diffusion of the scheme for advection and only the transversal dispersion
is calculated explicitly (i.e. as a “real physical” dispersion). In other words – the
advection problem is solved in the stream direction and the diffusion problem in the
transversal direction.

In the cases of possible representation of numerical diffusion with hydrodynamic
dispersion coefficients, the numerical models for solute transport get more efficiency
and reliability: we can use either the calculation of pure advection or we know what
change of physical parameters corresponds to the numerical error; i.e. also the basic
numerical method can produce physically realistic results of porous media transport
satisfactory for hydrogeologists.

2. Numerical method.

2.1. Finite-volume explicit upwind scheme. We consider the time-explicit
scheme based on the finite-volume (FV) space discretisation with the mass fluxes
calculated with upwind approximation [8, 2]. Defining the cell-centred representation
[2] of unknown concentration (cell k, time n∆t)

Cnk ≈
1

Vk

∫

Vk

c dV(2.1)

and the upwind flux approximation

flux[j − k] ≈ CkUkj if Ukj > 0 (from Vk to Vj) ,(2.2)

flux[j − k] ≈ CjUkj if Ukj < 0 (from Vj to Vk) ,(2.3)
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we derive the FV scheme of the advection

C
n+ 1

2

k = Cnk +
∆t

Vk
·
[
−
∑

j∈Nk
(U+

kjC
n
k + U−kjC

n
j ) + CnkQ

−
k + C̃nkQ

+
k

]
,(2.4)

where ∆t is the time step duration, Qk is the source/sink intensity of fluid, C̃nk is
the injected concentration (given), Vk is the volume of the cell, Nk is the index set
of neighbour cells. Next, Ukj are the fluxes from k-th cell to j-th cell, and the
superscripts + and − behave as a “switch” between a positive or negative number
(a+ = a for a ≥ 0 and a+ = 0 for a < 0 etc.).

2.1.1. Remark on implementation and interface. Even if we solve 2D prob-
lems in this paper, we work with the more general model based on the presented
numerical method. The model is implemented as a 3D application for real-world
underground contamination problems, with interface for general input data (unstruc-
tured 2D topology, cell-wise prescription of initial and boundary conditions). In this
form, it was successfully applied for particular underground transport problems and
also used as a base of model of non-equilibrium transport in dual-porosity media [3].

The model is connected to fluid flow model, providing the fluxes Ukj through cell
sides (i.e. approximation of velocity field). In the mentioned application system as
well as in our experiments the model based on mixed-hybrid finite element method is
used [4]. For the experiments here (with a-priori given velocity field), the use of the
flow model is just for convenience in processing of input data; the boundary conditions
instead of the velocities/fluxes are entered.

2.2. Expression of numerical diffusion in 1D. With linear ordering of cells
(1D problem), the FV scheme (2.4) corresponds to a finite difference scheme

Cn+1
k = Cnk − v

∆t

∆x
(Cnk − Cnk−1) .(2.5)

Through analysis of the second-order approximation error, the numerical diffusion
(i.e. the coefficient at the second derivative) can be identified (see e.g. [2, 6])

Dnum =
1

2
v∆x(1− Cr) , Cr =

v∆t

∆x
,(2.6)

where ∆x is the mesh size and Cr is the Courant number, representing the stability
condition 0 < Cr ≤ 1 , which is a restriction for time step (to be sufficiently small).

In terms of our FV model, the Courant number can be expressed as the “non-
overflow” condition for both outflow and inflow at each cell

Cr =
∆t

Vk

(
Q+
k +

∑

j∈Nk
U+
kj

)
=

∆t

Vk

(
−Q−k +

∑

j∈Nk
(−U−kj)

)
.(2.7)

Understanding the mesh size ∆x in the expression (2.6) as the distance of cell centres
in the FV model, we can obtain the formula expressing the numerical diffusion in the
1D problems (or in any problem with appropriate “symmetry”, i.e. orientation of
mesh and velocity) solved by the FV scheme (2.4).

There is an open question concerning the behaviour of the model for general ge-
ometry of the problem (mesh structure, velocity orientation, etc.) in the sense of nu-
merical diffusion in various direction (e.g. a possible representation by “longitudinal”
and “transversal” coefficient, if adopting the terms of porous media hydrodynamic
dispersion).
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Fig. 3.1. Meshes used for the experiments: rhomboidal domain with equilateral triangles, rect-
angular domain with squares/right triangles after random perturbation with variance 0.5m.

2.3. Verification of estimates in 1D. Before solving and analysing more com-
plex 2D problems, we tested first of all the expression of numerical diffusion in 1D.
In other words, the validity of argumentation in the previous subsection generalising
the finite-difference formula (2.6) to our FV scheme (replacing the meaning of ∆x) is
checked.

The results well correspond to expected 1D gaussian profile of diffusion/dispersion
for Dirac initial condition. We note that the calculation is in fact numerically equiv-
alent to the 1D finite-difference case (even if 3D basis of the model). The experiment
also confirms the appropriateness of representing the Dirac initial condition in the
numerical model (with given mass in a single cell).

3. Experiments.

3.1. Description of problems and processing of results. We study two
special geometrical influences on two kinds of mesh topologies in 2D, for problems
with uniform velocity field and Dirac-like initial condition for the advective transport.

The problems are chosen to make straightforward generalisation of 1D problem,
or more precisely of a 2D problem where the velocity is parallel to the mesh sides (i.e.
with zero numerical transport in the transversal direction just like in the 1D). The
first case is random perturbation of the mesh point positions, causing the sides to be
slightly non-parallel to the velocity and the mass transfer in transversal direction to
appear. The second case is the “rotation” of the velocity direction with respect to
the directions of the mesh sides, leading to a bit more complex anisotropic behaviour
of the numerical mass transfer.

Besides that, we also observe the influence of the Courant number, which is the
substantial measure of numerical diffusion in the 1D problems.

3.1.1. Computational meshes. We use the following two mesh topologies: one
composed of equilateral triangles (denoted as ”triangle” below) and the second com-
posed of right triangles paired to squares (denoted as ”square” below). A rhomboidal
domain for the first (Fig. 3.1 left) and a rectangular domain for the second (Fig. 3.1
right) are considered.

The length of triangle edges is 10m (except of diagonals), meaning the equivalent
step in 1D problem ∆x = 5m. Considering the velocity v = 1m/d and time step
∆t = 5d, we obtain the Courant number around 0.5 (changes slightly with mesh
perturbation and velocity directions).

3.1.2. Model problem to solve. The solved transport problem is chosen so
that the advection-dispersion equation with uniform velocity field and anisotropic
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Fig. 3.2. Visual expression of the numerical diffusion behaviour: the distribution of concentra-
tion in final time vs. the initial distribution (single black triangle/square), the arrows express the
direction of water flow.

dispersion (two coefficients) has an analytical solution: for the initial condition given
by the Dirac δ-function in the point [0, 0], the solution is1

c̃(x, y, t) =
M

4πd
√
DLDT t

exp
[
− (x− vxt)2

4DLt
− y2

4DT t

]
(3.1)

where M/d is a dimensional factor (M corresponds to the total “injected” mass and d
correspond to “thickness” of the 2D domain), the velocity is parallel to x axis (without
loss of generality) with the component vx, and DL and DT are the diffusion/dispersion
coefficients in longitudinal and transversal directions respectively.

In the comparisons, the appropriate coordinate transformation (movement and
rotation) is used, whereas independent rotation of velocity direction and rotation of
principal directions of dispersion are considered. The angle of advective movement is
determined by the given velocity (angle θ with respect to the original x axis), while
the angle of dispersion direction (angle φ between the direction of higher dispersion
and the original x axis) is a subject of identification in the experiments.

3.1.3. Method of comparison. We compare the results of the FV upwind
model of advection with analytical solution of the corresponding advection-dispersion
problem in all mesh points in the final time of computation (t = 200d). The measures
of fit are the maximum absolute difference and the relative standard deviation

dev =
1

max(c̃i)

√√√√
N∑

i=1

(Ci − c̃i)2

N − 1
,(3.2)

where Ci are model results, c̃i are values of analytical solution, i is the cell index, and
N is the number of cells.

The identification of numerical diffusion is done by minimizing the measures of
difference by setting the values DL and DT and the angle φ of the characteristic di-
rections of the dispersion (orientation of the isoline ellipses) with respect to x axis.
Besides these measures, for initial estimates and for cases of non-uniqueness, an “op-
tical” comparison of cross-section profiles was used (shape of gaussian curves).

3.2. Influence of mesh perturbation. In this case, the identification of nu-
merical diffusion is quite clear: the numerical scheme produces a distribution of con-
centration in a shape of gaussian curve with different width in two orthogonal direction

1We remark that the computational domain is sufficiently large so that it can be replaced by the
infinite domain concerning the solution of dispersion problem.
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Table 3.1
Numerical diffusion on meshes with perturbation of node position. Dependence of coefficients

on variance of perturbation, for the two types of mesh (triangles and squares).

variance (m) Dtri
L (m2/d) Dtri

T (m2/d) Dsqr
L (m2/d) Dsqr

T (m2/d)

0.1 1.25 0.04 1.25 0.055
0.2 1.3 0.06 1.3 0.075
0.5 1.3 0.2 1.3 0.18
1 1.95 0.5 2.05 0.5
2 2.35 0.9 2.8 1.5
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Fig. 3.3. Longitudinal and transversal dispersion (m2/d) in equilateral triangular mesh, in
dependence on variance of random perturbation of mesh point positions (m).

(Fig. 3.2 in the right). Typically, the numerical diffusion is stronger in the direction
of velocity, except of cases with Courant number close to 1 (see the subsection 3.4).

Taking into account the 1D estimate of numerical diffusion, we can compare the
results with the case of no perturbation, which is equivalent to 1D as the velocity is
parallel to a certain set of cell sides. For the used parameters (v, ∆x, Cr, section 3.1),
we derive the 1D numerical diffusion coefficient Dnum = 1.25.

The results for both mesh topologies (triangular and rectangular) are given in
Tab. 3.1, the triangular case also in Fig. 3.3. The possible values of perturbation vari-
ance are limited by technical aspects: If the perturbation is too small, the transversal
transport influences just two neighbouring rows of cells, which is not representative
enough for curve fitting. If the perturbation is too large, the topology of mesh points
and their connections is lost.

We observe that for smaller variance (below 1m), the longitudinal coefficient DL is
almost constant and approximately equal to the value in 1D (i.e. unperturbed mesh).
Together, the transversal coefficient DT rises with rising variance, and the results for
both type of meshes are similar. The continual change from the 1D-symmetry case
is thus well confirmed. The results for higher values of variance show different trend
and also differ between the mesh types.

3.3. Influence of mesh and velocity directions. Only the “triangle” mesh
was used for this experiment, to exclude another source of anisotropy, caused by the
orientation of the diagonals in the square mesh. Thanks to the symmetry of the mesh,
the interval for angle between 0 and 30 degrees covers all the possible situations. The
set of angle values 0, 3.3, 6.7, 10, 20, 30 (deg) is representative to demonstrate the
behaviour.
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Fig. 3.4. Dispersion coefficients (longitudinal and transversal) and angle of rotation of principal
directions with respect to the mesh (equilateral triangles), in dependence on angle of velocity to the
axis (m2/d, deg).
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Fig. 3.5. Influence of Courant number to the longitudinal and transversal dispersion for trian-
gular mesh and θ = 30deg.

The zero angle corresponds to 1D-symmetry (as mentioned above) and θ = 30deg
is “left-right isotropic”, i.e. no rotation of ellipses of concentration isolines with respect
to the direction of velocity (see also Fig. 3.4 and Fig. 3.2 left). The behaviour for
angles in between is quite complicated: the isoline ellipses rotate in opposite sense that
the velocity with respect to the mesh, and with rising angle up to 30deg, the principal
directions exchange (the direction longitudinal for θ = 0 transform to transversal for
θ = 30deg). In fact except of the limit values of angles, the terms longitudinal and
transversal lose their meaning.

3.4. Influence of Courant number. This analysis is understood as an exten-
sion of previous studies. We performed experiments for few special cases, which are
representative for the overall trend.

In general, the Courant number determines the numerical diffusion process in
the direction of velocity. For perturbed meshes, it simply means the longitudinal
dispersion. For θ = 30deg (Fig. 3.5), the situation is similar (as the behaviour is
almost isotropic), while for θ = 6.7deg, the anisotropy (rotation of isoline-ellipses
with respect to the direction of velocity) is substantially influenced: very strong for
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Cr→ 1 while smaller for Cr→ 0.

A typical behaviour for isotropic problems is the following: The transversal coef-
ficient is almost constant (given e.g. by mesh perturbation or mesh structure itself)
and the longitudinal coefficient given approximately by the relation (2.6) for 1D case.

4. Conclusion. We determined substantially different cases of behaviour of the
numerical diffusion. For flow velocity parallel to mesh (perturbed) or for the left-right
symmetric case, the numerical diffusion resembles the dispersion process in porous me-
dia in sense of two dispersion coefficients in the direction of velocity and the direction
orthogonal to it. The diffusion/dispersion in the longitudinal direction is given by the
Courant number according to the 1D relation (2.6) and in the transversal direction
is given by structure of the mesh. Moreover, (2.6) gives a correspondence between
the porous media dispersivity αL [1, 8] and the mesh step ∆x, concerning the linear
dependence on velocity DL = αLv. In this sense, we extends the results in [7].

For the non-symmetric cases of velocity direction vs. characteristic directions
of the mesh, the behaviour of the numerical diffusion is complicated: it does not
correspond to gaussian function with the principal direction parallel to velocity, but
mostly the difference is only in certain rotation of the isoline ellipses.

Thus for the studied class of problems (representing the typical cases in ground-
water modelling), we have a basic estimate whether the numerical diffusion in the
transport model can damage the results qualitatively or not: In perturbed and sym-
metric (30 deg) cases, the numerical diffusion can be interpreted as the hydrodynamic
dispersion. The usual ratio 1:10 of transversal and longitudinal dispersion [8] is valid
for the perturbation with the variance between 0.2m and 0.5m, i.e. 2–5% of the mesh
step, and for Cr > 1

2 . The difference from the correct ration in other cases is in one
order of magnitude. For all the cases, including those with incorrect anisotropy, the
numerical diffusion in all directions is bounded by the 1D relation for Cr → 1, i.e.
1
2∆xv. To obtain more accurate and general results, it will be necessary to use larger
set of model problem configurations in the experiments and as well useful to study
the problem theoretically.

Accuracy of identification. The relative standard deviation between the model
(numerical diffusion) and the analytical solution (“real” dispersion) in all the exper-
iments is between 1 and 3 percents. In fact, this measure is influenced by the large
number of almost-zero values in both compared sets. Quality of fit is better expressed
by ratio of maximum absolute deviation to maximum values. This is about 10% for
experiments with perturbed meshes and up to 20% for non-parallel velocity and mesh
(higher for small angles).

Further consequences to real-world problems. Underground problems are typical
with the large dimension in horizontal direction and small in vertical direction. To-
gether with the velocity field influenced by drawing/injecting wells, it leads to the
situation when Cr is small in most of the cells (quite few cells with higher velocity
“block” the stability condition with high Cr). Thus the worst behaviour (in the sense
of anisotropy) of numerical diffusion is avoided.
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