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MODELLING SLOVAK UNEMPLOYMENT DATA BY A
NONLINEAR LONG MEMORY MODEL ∗
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Abstract. The main visual feature of Slovak monthly unemployment data (from the period
January 1993 – August 2004) is a dramatic increase after the elections in October 1998 which can
be expressed by a step in the deterministic level function. In the residuals from this level function
we can identify a significant cyclical component and a long memory structure (with the estimated
value of the Hurst parameter close to 0.8), as well as an autoregressive short memory behavior.
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1. Introduction. Analysis of US month unemployment data (from the period
July 1968 – December 1999) based on a nonlinear long memory model has been
performed in [Van Dijk et al., 2000]. The considered nonlinearity (with 2 regimes)
was based on the observation that US unemployment seems to grow faster in recessions
than it falls in expansions.

The main visual feature of Slovak monthly unemployment data (from the period
January 1993 – August 2004) is a dramatic increase after the elections in October
1998 (and following changes in composition of government coalition parties and in
economic policies, that had supported artificial employment in unrentable businesses
and economic expansion based on a dramatic increase of foreign indebtedness). This
switch of political regime corresponds to a parallel switch of “regime” in our time
series, which can be expressed by a remarkable positive shift in its values (the average
value for the period before the end of 1998 was 13.41 %, for the following period
17.11 %). Visual investigation of the values of our time series around the end of 1998
indicates that the increase has been quick but not totally instant. Inspired by the
methods of smooth transition regime-switching models, we model this change in values
by a logistic class smooth step function that we will call base level function. In the
residuals from this base level function, we can identify a significant cyclical component
and a long memory structure (with the estimated value of the Hurst parameter close
to 0.8), as well as an autoregressive short memory behavior.

2. Methods and results of the modelling Slovak Unemployment data.
According to modern principles of time series modelling (see Franses, 1998) we adapt
individual steps of our analysis to the main visual properties of the studied time series
of monthly values of unemployment rates in Slovak Republic in the period January
1993 – August 2004 that is shown below.

2.1. Regime switching change of base level. Since the level of Slovak un-
employment have clearly risen after the election (in end subsequent change of Govern-
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Fig. 2.1. Slovak unemployment data from the period January 1993 – August 2004

ment) in October 1998 (corresponding to t = 70), we tried to model the consequence
of this change by a base level function

L(t) = a+ bG(t, c, γ)(2.1)

where

G(t, c, γ) =
1

1 + e−γ(t−c)(2.2)

is a logistic function.
Applying methods of nonlinear optimization we received the following (least

squares) parameter estimates:

a = 13.362; b = 3.738; c = 71.36; γ = 2.73.

The shape of the resulting base level function is shown at the following Fig. 2.2.

Fig. 2.2. Original time series and the base level function.
Original data —, Base level function - - -
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2.2. Identification of seasonal and cyclical component. Now we proceed
in analysis of residuals of original unemployment data from corresponding values of
the estimated base level function. We return to classical procedures of time series
analysis and estimate the coefficients (and test significance) of the seasonal (annual)
period component in this residuals. The contribution of this seasonal component (with
the amplitude close to 0.5) to the explanation of the variability of the analyzed time
series is strongly significant (p < 0.01). Next we proceed by calculating the values of
periodogram for remaining residuals (Tab. 2.1)

f̂ (ωj) =
γ̂ (0)

2π
+

N−1∑

k=1

γ̂ (k)
cos (k ωj)

π

where N is the length of the time series (N = 140), ωj = 2π j
N is j-th Fourier frequence

and γ̂ (k) is the sample covariance function for lag k.

Table 2.1
Periodogram for remaining residuals after base level function and seasonal component

N/j
[months] f̂ (ωj)

N/j
[months] f̂ (ωj)

70 8.83 140/13 0.52
47 2.85 140/12 0.48
140 1.96 140/9 0.44
35 0.93 140/24 0.42
6 0.57 140/8 0.36

Applying step-wise regression procedure on the relation between the considered
residual time series and periodic functions with the above Fourier frequencies, we
conclude that the most important periods are (approximately) 6, 4 and 3 years.

The resulting deterministic function (systematic component) has the form

Xt= 13.36 +
3.74

1 + e−2.73(t−71.36)
+ 0.34 cos

(
2πt

12

)
+ 0.36 sin

(
2πt

12

)

−0.53 cos

(
πt

70

)
− 0.73 cos

(
πt

35

)
− 0.51 cos

(
3πt

70

)
− 0.36 cos

(
2πt

35

)

−0.26 sin

(
πt

70

)
+ 1.02 sin

(
πt

35

)
+ 0.50 sin

(
3πt

70

)
+ 0.18 sin

(
2πt

35

)

The quality of the fit of the original time series by the combined systematic
component (base level function, seasonal and cyclical components) can be seen in the
Fig. 2.3.

The graph of the autocorrelation function of residuals from the combined system-
atic component function (see Fig. 2.4) indicates the existence of significantly nonzero
terms both of low and high orders.

2.3. Modelling long memory features. In order to identify and eliminate
high order (long memory) terms, we try to find (for the considered time series of
residuals Zt) a representation of the ARFIMA form [Fouskitakis et al., 2000, Van
Dijk et al., 2000]
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Fig. 2.3. Original data and regression function. Original data —, Systematic component - - -

Fig. 2.4. Autocorrelation function of residuals

(1−B)dZt = at(2.3)

where
B is the backward shift operator (i.e. BZt = Zt−1),
{at} is a covariance stationary ARMA process.

The fractional difference operator is defined by

(1−B)d=

∞∑

k=0

(
n
k

)
(−B)

k

= 1− dB +
d (d− 1)

2!
B2 − d (d− 1) (d− 2)

3!
B3 + · · ·(2.4)

The series Zt is covariance stationary if d < 0.5 and invertible if d > −0.5. The
autocorrelation function of Zt does not decline at an exponential rate, as is char-
acteristic for covariance-stationary ARMA processes, but rather at a (much) slower
hyperbolic rate. For 0 < d < 0.5, Zt possesses long memory in the sense that the
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autocorrelations r(k) are not absolutely summable. This implies that even though the
r(k)’s are individually small for large lags k, their cumulative effect is important. The
unknown parameter d can be estimated via so-called Hurst parameter H = d + 0.5
that is the slope in the regression

log

(
R

S

)

n

= log c+H log n

for the so-called rescaled ranges
(
R
S

)
n

(defined below). Details of the estimation
procedures has been taken from [Millen and Beard, 2003].

Firstly the time series must be divided into D contiguous sub-series of length n,
where D × n = N , the total length of the time series. For each of theses sub-series
m, where m = 1, ..., D:

1. Determine the mean Em of each sub-series.
2. Determine the standard deviation Sm of each sub-series.
3. Normalise the data {Zi,m} by subtracting the mean from each data point:

Xi,m = Zi,m −Em, for i = 1, . . . , n.

4. Using the normalized data create a cumulative time series by consecutively
summing the data points:

Yi,m =

i∑

j=1

Xj,m for i = 1, . . . , n.

5. Using the new cumulative series find the range by subtracting the minimum
value from the maximum value:

Rm = max{Y1,m, . . . , Yn,m} −min{Y1,m, . . . , Yn,m}.

6. Rescale the range, RmSm by dividing the range by the standard deviation.
7. Calculate the mean of the rescaled range for all sub-series of length n:

(
R

S

)

n

=
1

D

D∑

m=1

Rm
Sm

.

8. The length of n must be increased to the nect higher value where D×n = N
and D is an integer value. Step 1 to 7 are then repeated until n = N/2.

9. Finally, the value of H is obtained using an ordinary least squares regression
with log(n) as independent variable and log

(
R
S

)
n

as the dependent variable.
The slope of the resulting equation is the estimate of the Hurst exponent.
The regression is run over values of n greater than 10, as small values of n
produce unstable estimates when sample size are small.

The resulting value of the estimate of Hurst parameter (as the measure of long-
term persistence of shocks) in our case is H = 0.792, which is significantly larger than
the critical value 0.5. The estimate of the fractional differencing parameter d = 0.292,
hence the series Xt is covariance stationary, invertible and possesses long memory.

We see that the quality of fit of the time series of residuals improved considerably
after application long memory filter (see Fig. 2.5).
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Fig. 2.5. Time series of residuals and their model. Residuals —, model - - -

2.4. Modelling short memory structure of residuals. As the last step of
our analyzes we applied Box – Jenkins methodology to the residuals of the long term
filter. The best fit (with respect to AIC and BIC criteria) has been received for
a model in the class AR(7) (the numbers in parentheses are estimates of standard
deviations of estimates of model coefficients):

Zt = 0.92Zt−1 − 0.46Zt−2 − 0.14Zt−3 − 0.15Zt−5 + 0.31Zt−6 − 0.44Zt−7

(0.08) (0.11) (0.09) (0.09) (0.11) (0.08)

The final fit of original data is in the Fig. 2.6.

Fig. 2.6. Time series of Slovak unemployment data and model

The diagnostic check of the ultimate residuals (see Fig. 2.7 (left)) indicated no
significant autocorrelations (see Fig. 2.7 (right)).

3. Conclusion. We selected four steps of analysis according to basic proper-
ties of the considered time series that have been manifested in the graphically visible
change of the basic level after October 1998, in the periodogram of remaining resid-
uals, in the pox diagram and in autocorrelation structure of resulting residuals. The
resulting model exhibits a high order of fit and desired quality of diagnostic check for
residuals.
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Fig. 2.7. Residuals after model (left). Autocorrelation function (right).
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