
Proceedings of ALGORITMY 2005
pp. 42–52

ADVANCES IN PARALLEL ADAPTIVE SIMULATION ON
UNSTRUCTURED MESHES

STEFAN LANG ∗

Abstract. Parallel simulations of time-dependent problems on unstructured meshes using h-
adaptation require the cooperation of numerical methods, distributed mesh management and dy-
namic load balancing and migration. Parallel-adaptive solution schemes, e.g. for tracking a front,
incorporate mesh changes preferably in regions of significant solution phenomena.

This work focuses on advances in parallel adaptive computing on unstructured meshes. We
present recent extensions to a parallel programming model, which allow a more efficient and stable
realization of small mesh changes caused by grid adaptation. For reasons of algorithmic complexity
processor local changes result only in incremental operations preserving a global and consistent view
onto the distributed mesh.
While tracking fronts with parallel grid adaptation processor local computation load varies signif-
icantly. Thus dynamic repartitioning of the already distributed computation load is needed. We
present and compare two schemes PRCB and MCAR capable to do a rebalancing in the context of
multiplicative multigrid as optimal-complexity solver inside the numerical scheme.

Two applications from reservoir engineering demonstrate how these new capabilities are efficiently
used in 2D and 3D parallel-adaptive simulations which require mesh adaptation and dynamic load
balancing and migration during run-time.

Key words. Two-Phase Flow, Parallel Computation, Multigrid Methods, Mesh Adaptation,
Dynamic Load Balancing

AMS subject classifications. 65Y05, 65M55, 65M50

1. Introduction. The numerical simulation of complex physical phenomena
with finite element or finite volume methods can benefit from a number of techniques
which each in itself can accelerate computation time considerably. Most notably these
are grid adaptation, unstructured grids and multigrid methods. The increasing uti-
lization of MIMD architectures has given rise to the question of how these techniques
can be implemented on modern supercomputers to solve large scale three dimensional
problems.

Advances in dynamic load balancing and the development of the Programming
Model DDD, which is a fundamental tool for parallelization of unstructured mesh
applications, are investigated. Their benefits are discussed by analyzing parallel-
adaptive simulations in 2 and 3D. Progress in the development road map of DDD is
discussed by example considering two features: the newly introduced DDD-ObjMgr
Environment and the capability to maintain interfaces for communication in an in-
cremental way.

In this paper we consider two problems from petroleum reservoir engineering,
where water displaces oil in a porous medium. These problems are realized inside
the MUFTE-UG framework [2, 4]. The solution develops a sharp front, therefore
simulations can greatly benefit from mesh adaptation. The simulation process requires
grid adaption in each time step, which involves element refinement and coarsening
based on error indicators and an adjustment of the load balancing by dynamic load
migration. Thus they are perfectly suited for parallel-adaptive computations.

∗Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld
368, 69120 Heidelberg, Germany

42

ADVANCES IN PARALLEL ADAPTIVE SIMULATION 43

prio ident iif / ifxfer join

object manager coupling manager

Fig. 2.1. The DDD Programming Model with its structure into modules. Modules with white
colored boxes are new, redesigned or enhanced significantly. Gray colored boxes have not been changed
to considerable extend.

While there are many developments which combine subsets of the aforementioned
features, the number of software frameworks that aim at the same generality as the
presented parallel-adaptive scheme realized in ug, is substantially smaller. As an
ongoing project SIERRA [6] can be mentioned as a development effort for parallel-
adaptive finite element simulations.

Even though the capabilities of 3d parallel adaptive methods with dynamic load
balancing have been well realized, it seems like the complexity of the software engi-
neering effort has prohibited more widespread use. We hope that the results presented
in this paper help to enhance the acceptance of these methods.

2. A Programming Model for Unstructured Hierarchical Meshes. To
enable unstructured mesh adaptation and load migration, elaborate data structures
and capabilities for dynamic mesh changes are of great importance. Only with the
availability of such functionalities it becomes possible to build up a complex mesh
hierarchy, like a locally adapted and dynamically redistributed multigrid. It becomes
immediately apparent that straightforward usage of message-passing programming
models, e.g. MPI, will certainly be doomed to failure due to the lack of abstraction
of communication and distribution mechanisms.

Therefore, an abstract programming model supporting high-level operations on
the distributed grid objects has been designed and integrated into the UG-library.
From the architecture’s viewpoint this Dynamic Distributed Data (DDD) model is
implemented as a UG subsystem; a standalone version is nevertheless available in
order to allow parallelization of other projects as well.

The basic abstraction used by DDD is the notion of distributed objects. We call
the data structures in the application, which are distributed on other processors, DDD
objects. Each DDD object is assigned a global unique identifier (GID) and a set of
information tuples (proc, prio), so called couplings. The coupling tuples store the
owning processor id of a copy of the same object and its priority on that processor [3].

The current DDD component design is shown in Figure 2.1. In this figure modules
join, iif, prio and object manager have been introduced newly or have been sub-
ject to major redesign. All these modules can be used to manipulate the distributed
graph structure of references between distributed objects and to invoke efficient com-
munication procedures for collections of distributed objects. A short description of
DDD components with emphasis on new or enhanced functionality follows:

• Interfaces (if): Supports communication operations on existing static data
topologies. Interfaces are subsets of distributed objects at inter-processor
boundaries and can be used in a transparent manner after their initial defi-
nition. They are kept consistent despite all dynamic data changes by other

44 S. LANG

DDD-Obj P closure adaptgridL unify overlap
MgrEnv

no 32 5.60 1.65 25.15 47.70
yes 32 5.10 1.79 6.23 8.05
no 64 3.62 0.87 15.94 27.03
yes 64 3.23 0.99 4.65 5.25
no 128 2.77 0.48 13.60 19.95
yes 128 2.50 0.60 4.92 4.32

Table 2.1
Time in seconds needed for several phases of parallel mesh adaptation with(out) using DDD’s

ObjMgr Environment. While some overhead is introduced in local mesh modification (adaptgridL),
improvements can clearly be seen in phases unify (ident + join) and overlap.

DDD-Module P closure adaptgridL unify overlap
if 16 22.78 1.52 8.61 2.64
iif 16 6.82 1.52 2.72 2.72
if 32 20.58 0.71 8.99 1.99
iif 32 5.83 0.71 2.61 2.03

Table 2.2
Time in seconds needed for several phases of parallel mesh adaptation with(out) using DDD’s

iif Module. In both cases DDD’s ObjMgr Environment is used. Improvements can clearly be seen
in phases closure and unify (ident + join).

DDD components.
• Incremental Interfaces (iif): The incremental update version for interface

rebuild reduces the algorithmic complexity to renew a single interface from
O(Nlog(N)) to O(Nold) + O(Nnewlog(Nnew)), where N = Nold + Nnew is
the sum of old, already present couplings in this interface and newly created
couplings, which have to be integrated into it. In many examples with local
phenomena (e.g. tracking of two-phase flow fronts) Nnew is compared to Nold
quite small: Nnew � Nold, thus the interface update procedure has nearly
optimal complexity.
• Priority (prio): Changing the priority of distributed objects in a consistent

way is needed during transfer and coarsening. This can be done efficiently
using this module.
• object manager: During grid adaptation or dynamic load migration dis-

tributed objects are created or migrated between processors. To keep track
of references between mesh objects access from GIDs to local objects has to
be provided. For efficiency reasons references are reconstructed by iterating
over distributed objects in increasing GID ordering. The reconstruction it-
self is performed by localizing (substituting) a GID into a reference to the
corresponding copy of the distributed object in the local address space. Main-
taining the GID ordering in an incremental way results in a O(N) complexity
algorithm for the interesting case of parallel adaptivity. This is done in-
side the object manager environment marked with DDD ObjMgrBegin() and
DDD ObjMgrEnd() calls.
• Transfer (xfer): Provides procedures to create object copies on remote pro-

cessors or to delete local object copies. This enables dynamic changes of the
data topology at run time. This feature allows an easier implementation of a

ADVANCES IN PARALLEL ADAPTIVE SIMULATION 45

MATRIX

DDD_XferCopyObj

DDD_XferAddData
3D2D

Handler XferCopy

MATRIX

VECTORNODE

ELEMENT

EDGE

VECTOR MATRIX

BNDN

BNDS

VECTOR VERTEX

ca
ll d

ep
en

de
nt

 o
n

ob
je

ct
 a

ttr
ib

ut
e

XferScatterHandler

Lokalization of references

SetPriorityHandler

UpdateHandler

XF
ER

_R
EJ

EC
T

Globalization of references

receiver

unpacking processpacking process

XF
ER

_N
EW

XF
ER

_U
PG

RA
DE

ObjMkConsHandler

LDataConstructor

XferGatherHandler

sender

Fig. 3.1. Object copy tree for object selection (left) and handler stack (right) called during the
migration process.

dynamic load migration facility with flexible grid overlapping strategy.
• Identification (ident): Creation of new distributed objects is performed via

identification of local objects. This is possible during the complete program
run and enables dynamic grid changes (e. g. for adaptive grid refinement).
• Join (join): An extension of the identification functionality. Join allows new

objects to join into already existing distributed objects. For objects belong-
ing to the mesh overlap a join operation ensures an extension or deletion of
couplings via indirect messaging. This is crucial for code stability since miss-
ing couplings or duplicated distributed objects can lead to fatal situations in
distributed grid adaptation and dynamic load migration.

Tables 2.1 and 2.2 show results for 3D fixed-sized computations of the Buckley-
Leverett experiment at different architectures. The savings of using the DDD-ObjMgr
Environment can clearly seen in phases unify and overlap, whilst using DDD incre-
mental interface facility reduces closure and unify times, where most interfaces have
to be renewed.
Unify is the added time needed for building new distributed objects using ident and
join modules of DDD. Overlap measures the timings to transfer ghost elements in grid
adaptation, since we use a one-element ghost overlap that has to be updated both
in grid adaptation and load migration. Closure is the time to compute a conforming
grid closure and adaptgridL counts time needed for all local mesh changes: creation
and deletion of objects.

3. Dynamic Load Balancing and Migration. In a parallel environment,
local grid adaptation involves the need to rebalance the computational load. This
stage involves both, determining a new load balancing and dynamically redistributing
the objects of the mesh in a separate migration step. This section discusses both parts
of the rebalancing process in the context of multigrid.

3.1. Dynamic Load Balancing. Load balancing a single grid level means find-
ing a mapping LB : E → P , where E is the element set and P is the set of processors.
Via the dual graphG = (V,E) of the grid, V is defined by the element centers and E is
given by the element neighborships. Load balancing onto |P| processors can be formu-
lated as graph partitioning problem: Minimize the edge separator (objective) whilst
building |P| equal-sized partitions (constraint), each of size |E|/|P|. This optimiza-
tion problem is NP-complete and is referred to as single-objective/single-constraint
(SOSC) partitioning problem. Because of the NP-completeness partitioning is per-
formed by applying heuristics, which tend to reduce necessary communication dur-

46 S. LANG

ing parallel computation to a reasonable volume. Many partitioning methods for the
static SOSC partitioning problem have been proposed. All these partitioning methods
take into account only the interface length of interprocessor boundaries as objective
to minimize the total communication volume. Further costs of communication, e.g.
message startup times, are not considered by these schemes.

The quality of a multigrid load distribution (constraint) is determined by

ElImbal =

L∑

l=0

|E l|
|E|

Max
p∈P

(|E lp|)
|El|
|P|

− 1

 NdImbal =

L∑

l=0

|N l|
|N |

Max
p∈P

(|N l
p|)

|N l|
|P|

− 1

(3.1)
for element sets E lp and node sets N l

p, where p is a processor id and l a specific mesh
level. For a complete list of quality measures to evaluate the load balancing of a
multigrid see [5].

Communication, present in parallel multigrid methods, can be categorized into
horizontal communication inside grid levels during smoothing and vertical communi-
cation between grid levels in prolongation and restriction. Since we use multiplicative
multigrid methods, the smoothing process has to be performed grid level by grid level.
Because of efficiency reasons, each grid level has to be distributed over all processors.
This leads to a multi-constraint load balancing problem with L constraints, one for
each grid level. Furthermore communication implies 2L − 1 objectives to minimize
communication during smoothing and defect transfer. This multi-objective/multi-
constraint (MOMC) partitioning problem, which arises when multiplicative multigrid
is used as solver, is much harder to solve than the single-objective/single-constraint
(SOSC) load balancing problem to partition a flat grid.

Comparable differences exist, when load balancing requirements of multiplicative
and additive multigrid schemes are analyzed. Since additive multigrid allows smooth-
ing on all grid levels at the same time, load balancing can be formulated as SOSC
partitioning problem of a weighted graph, when we restrict to load balancing of whole
element trees1.

To compute a load balancing we apply in this paper two distinct methods: A
Parallel Recursive Coordinate Bisection variant (PRCB) and a graph-based meth-
ods, Multi-Constraint Adaptive Repartitioning (MCAR). Both schemes minimize the
communication volume with the difference that the first one handles mesh levels of a
multigrid independently, whilst the second one works on a single graph and is espe-
cially adapted to needs of multiplicative multigrid methods. In regard to the above
categorization, PRCB is a SOSC method and MCAR belongs to class of SOMC meth-
ods. A more detailed description of these schemes can be found in [5] and is not focus
of this paper.

3.2. Dynamic Load Migration. A key feature of the UG framework is its
capability to dynamically migrate grid objects between processors during run-time.
Thus a computation needs not to be interrupted, but continues after load transfer
with a balanced work load on each processor. This difficult task is supported by DDD
to a large extend.

The migration process is transaction oriented: First all transfer commands are
passed to DDD, which performs bookkeeping. Selection of objects, that have to be
transfered, starts at element objects. Elements store the load balancing information,

1An element tree is defined by a coarse grid element and all child elements created through
refinement.

ADVANCES IN PARALLEL ADAPTIVE SIMULATION 47

which has been computed in the load balancing process. Via the object copy tree
shown in Figure 3.1 transfer commands for dependent objects are generated. In a
second step these commands are executed by a single migration call to a migration
module. This migration phase itself has various stages. Packing the data objects into
buffers, sending and receiving of message buffers and unpacking objects of the data
structure. Both the whole structure and complicated technical aspects of these stages
are supported by DDD’s xfer module in a generalized way for arbitrary irregular data
structures. Keeping this powerful functionality behind DDD’s well defined interfaces
leads to a stable, maintainable and extendable migration subsystem.

4. Two-phase flow equations in porous media. The flow of two immiscible
fluid phases in a porous medium is described by the equations for the conservation
of mass and the generalized Darcy’s law. We denote by w the wetting phase and
by n the non-wetting phase. The system of nonlinear partial differential equations
can be written in phase pressure–saturation formulation with the unknowns pw and
saturation Sn.

∂(Φ%w(1− Sn))

∂t
−∇ ·

(
%w

kw
µw

K(∇pw − %wg)

)
− %wqw = 0

∂(Φ%nSn)

∂t
−∇ ·

(
%n
kn
µn
K(∇pw +∇pc − %ng)

)
− %nqn = 0.

(4.1)

Here, Φ is the porosity, %w and %n are the densities of phase w and n, qw and qn are
the source and sink terms for each phase, K the tensor of absolute permeability, kw
and kn the relative permeabilities, µw and µn the dynamic viscosities and g the vector
of gravitational force. The capillary pressure pc = pn − pw establishes the connection
between the phase pressures pw and pn and is a function of Sw. There are several
pc–Sw correlations known in the literature, we use the Brooks-Corey model

pc(Sw) = pd

(
Sw − Swr
1− Swr

)− 1
λ

, (4.2)

with the entry pressure pd and the residual wetting phase saturation Swr.
Together with a suitable domain Ω ⊂ Rn, n = 2, 3 and adequate boundary values

and initial values equation (4.1) describes a well posed initial value problem.
The vertex-centered finite volume discretization of (4.1) and a detailed description

of the derivation of the equations, modeling aspects, and solution strategies for the
fully coupled and fully implicit method are described in [1] and [4]. Here an implicit
time discretization is employed. The nonlinear system that arises in each time step
is solved iteratively with a Newton method and a multigrid solver for the linearized
system. The Newton method employs line search to achieve global convergence and
the multigrid method is a standard V cycle with truncated restriction.

For local grid adaptation we need to apply some kind of error indicator to detect
error critical areas. Here, the basic idea for an error indicator is to locate the regions
with a sharp interface between the phases. A sharp interface can be identified by
regarding the gradient of the saturations.

As error indicator to control refinement and coarsening we adopt a simple min-
max indicator. The element local indicator ηj , j = 1 . . .N is defined by the difference
between maximum and minimum value of the saturation value Sn of each element.
The global maximum max(ηj) is used to define tolerances for mesh adaptation.

48 S. LANG

DLB P 1 2 4 8 16 32
Method
PRCB TNLS 406 220 123 74 45 43
MCAR TNLS 406 230 124 66 46 39

Fig. 5.1. Permeability field used in the fivespot experiment (left side). Time [min] for com-
plete fivespot simulation consisting of 51 time-steps. Compared are two dynamic load repartitioning
schemes PRCB and MCAR. Number of unknowns varies from 87000 to 123,000. Computations are
performed on a Intel-based cluster with ethernet network (right side).

These tolerances are given by

tolrefine = refmaxmax(ηj) tolcoarsen = cormaxmax(ηj). (4.3)

An element is considered either for refinement, if the error indicator ηj for element
ej is above tolrefine, or for coarsening, if ηj is below tolcoarsen. For practical purposes
the results obtained using this heuristic indicator are accurate enough.

5. The fivespot problem. The fivespot problem is a classical model problem
from petroleum reservoir engineering. In order to exploit an oil reservoir, water is
pumped into the reservoir and displaces the oil. The model configuration consists of
a square in whose corners oil is produced. Water injection happens in the center of
the square. The symmetry of the problems allows for the reduction of the problem to
the right upper quadrant of the domain.

The numerical fivespot experiment fivehet2d exhibits a very distinct front travers-
ing the domain. If the permeability is not homogeneous throughout the domain, the
front will develop a complex shape. For the experiment the heterogeneous perme-
ability distribution shown in figure 5.1 was used. The developing front is used to
investigate how different dynamic load balancing schemes are able to capture and
repartition it. The two load balancing methods of concern, PRCB and MCAR, are
described in section 3.

The pictures in figure 5.2 visualize different qualitative behavior at the front. The
quality in terms of interface lengths depends visibly on the load balancing method.
The graph based dynamic load balancing variant (MCAR) produces much smoother
and more compact partition shapes, since it considers the connectivity information
of front elements on each level. PRCB doesn’t capture the shape of the front and
produces some unfavorable cuts through the front. This creates a long processor
interface which requires more communication. Table 5.1 shows simulations times on
different processor numbers for both load balancing schemes in comparison. While
the simple and fast PRCB is favorable on moderate processor numbers, the much
more complicated MCAR scheme pays off for larger processor counts with higher
communication demands.

2

2Note that in figure 5.2 the load balancing is shown from the top of the grid hierarchy, i.e. several
distinct grid levels are visible in one picture.

ADVANCES IN PARALLEL ADAPTIVE SIMULATION 49

Fig. 5.2. Development of the adaptive front at the phase boundary for load balancing with PRCB
and MCAR as dynamic load-balancing methods: adapted mesh, phase saturation in log-scale, load
balancing of whole multigrid (left) and front (right).

6. The Buckley-Leverett problem in 3d. Displacement processes of immis-
cible fluids are characterized by the viscosity and density differences of the fluids and
the surface tension forces at the interfaces of the fluid phases. The interface tends
to be unstable and under certain circumstances viscous fingering can develop. This
behavior can be observed in simulations too, if the grid resolves the front sufficiently
fine. On coarse grids fingering can not develop because of numerical diffusion. Many
time steps have to be solved before viscous fingering develops, it is therefore an ideal
phenomena in which to combine mesh adaptation and parallel computing.

The Buckley-Leverett experiment describes the displacement of oil by water in
a quadratic tunnel under consideration of gravitational forces. The left side of the
domain has an inflow condition associated, the right side an outflow condition. The
experiment bl3d was chosen so that it is still possible to run on a single processor
computer with sufficient memory for one million unknowns (∼ 500000 grid nodes).

A first study compares scalability behavior of the bl3d experiment on different
architectures. The Cray T3E-1200 as classical HPC-machine (T3E), and two off-the-
shelf PC-based architectures - with Myrinet-network (HELiCS) and with ethernet
(PPC).

Results in table 6.1 show that on a Cray T3E and the HELiCS comparable
speedups can be achieved for this fixed-sized problem. On moderate processor counts
up to 32 processors PPC gives reasonable speedups, but clearly scalability limitations
become apparent on higher processor counts. Table 6.2 shows a comparison which
investigates how dynamic load migration influences computing time. The initial load
balancing is chosen equally distributed work load by load balancing into stripped par-
tition in flow direction, see figure 6.1. During the first time steps the front develops
only in the direction along the load balancing stripes and work load stays equally
distributed among processors. But when fingering occurs because of instabilities in
the phase front, the work load differences between processors increase. This experi-
ment shows how an already good load balancing can be improved by dynamic load
migration and thus the time for the solution process can be reduced.

Symbols in table 6.2 are number of processors (P), used load balancing method

50 S. LANG

ARCH P 1 4 16 64 128 256
N 1.1M 278K 72K 19K 10.6K 5.9K

T3E TNLS[s] 233 921 72 575 17 597 4 599 2 423 1 354
HELICS TNLS[s] - 23 535 6216 1638 889 448

PPC TNLS[s] - 35 048 9 364 3 019 - -

T3E SNLSOLV E 1 3.22 13.3 50.9 96.6 173
HELICS SNLSOLV E - 3.22! 12.2 46.3 85.2 169

PPC SNLSOLV E - 3.22! 12.1 37.4 - -
Table 6.1

Comparison of fixed-sized problem scalability on different architectures: T3E, HELICS and
PPC. N indicates the number of unknowns per processor, TNLS the total time for numerical solution
in seconds, Sx denotes the speedup.

P E AvgE ElImbal HNIFSUM TADAPT TNLS
LB N AvgN NdImbal HNIFMAX/HNIFIMB TLB/TMIG TIT/NIT

32 564277 21053 56.4 144664 27.6 13766
STAT 455766 17725 45.3 6526/40 0.0/0.0 51.0/4.84

32 595991 22211 12.3 184324 33.3 13825
RCBXY 0.2 477271 18565 19.8 7701/31 0.9/50.4 39.6/4.81

32 592823 22095 16.8 186711 34.4 13804
RCBXY 0.3 475218 18484 21.7 7956/33 1.0/54.7 40.9/4.81

64 659219 12263 70.7 228138 23.1 14925
STAT 514336 10036 54.7 5531/51 0.0/0.0 31.8/4.91

64 685768 12763 14.7 287570 27.1 14427
RCBXY 0.2 526698 10305 28.3 5858/29 0.8/35.5 23.4/4.87

64 683470 12719 20.4 287161 26.8 14638
RCBXY 0.3 525797 10284 30.9 5970/31 0.8/38.4 24.5/4.87

128 739935 6891 74.9 385184 20.4 15268
STAT 549129 5408 63.4 4689/54 0.0/0.0 18.3/4.89

128 755752 7039 29.4 452317 25.9 13534
RCBXY 0.4 556744 5486 46.9 4680/31 0.8/34.0 14.6/4.86

Table 6.2
Parallel scalability of experiment bl3d for load balancing with RCBXY in flow direction and fixed

load balancing STAT. The table entries are averaged over all time steps.

(LB), total number of elements/nodes (E/N), averaged number of elements/nodes per
processor (AvgE/AvgN), imbalance in element/nodes (ElImbal/NdImbal). Measures
to evaluate communication are total communication volume (HNIFSUM), maximal
volume (HNIFMAX) and volume imbalance (HNIFIMB). Only the horizontal inter-
faces are evaluated, since these interfaces dominate the communication during multi-
grid solution of the linearized problem. Further columns list timings for grid adaption
(TADAPT), load balancing (TLB) and load migration (TMIG) and timings for non-
linear solution (TNLS), one multigrid cycle (TIT) and number of multigrid cycles to
convergence (NIT).

The results in table 6.2 show averaged values of a simulation with a fixed load
balancing compared to a one with dynamic load balancing using RCBXY. RCBXY is a
variant of RCB that takes the flow direction into consideration. Dynamic load balanc-
ing is only performed if a given value of load imbalance (ElImbal) is reached. Thus
load balancing is performed only on demand after a couple of time steps.

In the example analyzed we used an tolerated imbalance of 0.2 and 0.3. Even
though the initial load balancing is very satisfactory, the dynamic load migration can
improve the solution time, which is the dominant part of the whole simulation process,
by ∼25%. Remember that in most applications local phenomena appear in much
more complex shapes, see e.g. fivespot example. Thus dynamic load balancing and
migration are obligatory to perform a complete simulation over many time steps with
a significant speedup and without getting into trouble with out-of-memory situations
on single processors.

ADVANCES IN PARALLEL ADAPTIVE SIMULATION 51

Fig. 6.1. Load balancing for experiment bl3d in the static case and for the dynamic case (framed
pictures).

7. Conclusion. In this paper we present methods and concepts for parallel adap-
tive simulation of time-dependent, nonlinear partial differential equations.

Parallelization is realized with the innovative programming model DDD. Only by
changes inside the programming model implementation we could improve performance
of parallel mesh adaptation and load migration significantly. Since the simulation code
itself has not been altered, this shows that a high abstraction level of the parallelization
approach helps to overcome important hurdles of software engineering: efficiency,
maintainability, and stability of the whole parallel-adaptive scheme.

Both dynamic load balancing schemes PRCB and MCAR show significant speedups
on the fixed-sized fivespot example, even on a architecture with slow interconnection
network. For higher number of processors the multi-constrained MCAR scheme has
proven to be preferable over the simpler and faster PRCB scheme.

Further we present a comparison of architectures for a fixed-sized 3D parallel-
adaptive simulation. Results show that a commodity based cluster with fast inter-
connection network shows similar scalability than an expensive vendor-specific archi-
tecture up to 256 processors. An ethernet-based cluster scales in this case only up to
about 32 processors.

In a further experiment we apply dynamic load balancing and migration to treat
load imbalance during evolution of the two-phase front. Results show that even for
this worst-case situation a gain of 25% in the iteration time of the multigrid solver can
be obtained by dynamic load balancing schemes compared to static load balancing.

REFERENCES

[1] P. Bastian. 1999. Numerical Computation of Multiphase Flows in Porous Media. Technischer
Bericht, Technische Fakultät der Universität Kiel. Habilitiationsschrift.

[2] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners.
1997. UG - a flexible software toolbox for solving partial differential equations. Computing
and Visualization in Science, 1:27–40, 1997.

[3] K. Birken. 1998. Ein Modell zur effizienten Parallelisierung von Algorithmen auf komplexen,
dynamischen Datenstrukturen. Ph. D. thesis, Universitaät Stuttgart.

[4] R. Helmig. 1997. Multiphase Flow and Transport Processes in the Subsurface: A Contribution
to the Modeling of Hydrosystems. Springer.

[5] S. Lang, G. Wittum. 2004. Large-Scale Density-Driven Flow Simulation Using Parallel Un-
structured Grid Adaptation and Local Multigrid Methods. Concurrency and Computation:
Practise and Experience. To be published.

[6] J.R. Stewart, C. Edwards. 2002. Mathematical Abstractions of the SIERRA Computational
Mechanics Framework. Proc. of 5th World Congress on Comput. Mech.

