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A LOCAL RESTART PROCEDURE FOR ITERATIVE PROJECTION
METHODS FOR NONLINEAR SYMMETRIC EIGENPROBLEMS

MARTA MARKIEWICZ∗ AND HEINRICH VOSS†

Abstract. For nonlinear eigenvalue problems T (λ)x = 0 satisfying a minmax characterization
of its eigenvalues iterative projection methods combined with safeguarded iteration are suitable for
computing all eigenvalues in a given interval. Such methods hit their limitation if a large number
of eigenvalues (in the interior of the spectrum) are required. In this paper we propose a localized
version of safeguarded iteration which is able to cope with this problem.
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1. Introduction. Acoustic simulation is increasingly becoming an important
part of the automotive design process. The most costly part of the effort of optimizing
noise and vibration performance is the computation of frequency response for very
large finite element models because a very large number of modes (not necessarily at
the end of the spectrum) may be needed for obtaining satisfactory accuracy over the
frequency range of interest.

For instance, the major source of traffic noise at speed above 40 km/h for passen-
ger cars and above 60 km/h for trucks is the sound radiation of rolling tires (cf. [6],
[7]). Simulating the structural dynamics of the rolling tire by an Arbitrary Lagrangian
Eulerian (ALE) approach one ends up with the conservative gyroscopic eigenvalue
problem

Kx+ iλGx− λ2Mx = 0. (1.1)

Here K is the stiffness matrix modified by the presence of centrifugal forces, M is the
mass matrix, and G is the gyroscopic matrix stemming from the Coriolis force. K
and M are assumed to be symmetric and positive definite, and G is skew–symmetric.

More generally we consider the nonlinear eigenvalues problem

T (λ)x = 0 (1.2)

where T (λ) ∈ Cn×n is a family of large and sparse Hermitean matrices for every λ in
an open real interval J . For this type of problems iterative projection methods were
considered in [1, 5, 10, 11, 12, 13, 14, 15], and for the special case that the eigenvalues
of (1.2) in J can be characterized as minmax values of a Rayleigh functional a com-
bination with safeguarded iteration was discussed to determine a moderate number
of consecutive eigenvalues in [1] and [12].

This approach hits it limitations if a large number of eigenvalues (in particular
in the interior of the spectrum) of (1.2) is needed, since in this case one has to
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project the problem under consideration onto a sequence of search spaces of growing
dimensions requiring an excessive amount of storage and computing time. In this
paper we propose a new restart technique which projects problem (1.2) only to search
spaces of limited dimension. Our presentation is restricted to the Arnoldi method,
but the local restart technique applies to any other iterative projection method.

The paper is organized as follows. Section 2 outlines the variational charac-
terization of eigenvalues for nonlinear and nonoverdamped eigenproblems and the
safeguarded iteration method, and Section 3 recalls the Arnoldi method for sparse,
symmetric, and nonlinear eigenproblems. In Section 4 we present the new restart
technique, and we discuss the problem of spurious eigensolutions. An example of a
gyroscopic eigenproblem in Section 5 demonstrates the efficiency of the new restart
method.

2. Solving dense symmetric nonlinear eigenproblems. We consider the
nonlinear eigenvalue problem

T (λ)x = 0 (2.1)

where T (λ) ∈ Cn×n is a family of Hermitean matrices for every λ in an open real
interval J . As for the linear case T (λ) = λI − A a parameter λ ∈ J is called an
eigenvalue of T (·) if problem (2.1) has a nontrivial solution x 6= 0 which is called an
eigenvector corresponding to λ.

For a linear Hermitean problem Ax = λx all eigenvalues are real, and if they are
ordered by magnitude λ1 ≤ λ2 ≤ · · · ≤ λn then it is well known that they can be
characterized by the minmax principle of Poincaré.

Similar results hold for certain nonlinear eigenvalue problems, too. We assume
that for every fixed x 6= 0 the real function f(λ;x) := xHT (λ)x is continuously
differentiable on J , and that the equation

f(λ;x) = 0 (2.2)

has at most one solution in J . Then equation (2.2) implicitly defines a functional
p on some subset D of Cn \ {0} which replaces the Rayleigh quotient in the varia-
tional characterization of eigenvalues of problem (2.1), and which we call the Rayleigh
functional.

For nonlinear eigenvalue problems variational properties using the Rayleigh func-
tional were proved by Duffin [2, 3], and Rogers [9] for finite dimensional overdamped
problems, i.e. if the Rayleigh functional p is defined in the entire space Cn \ {0}.
Nonoverdamped problems were considered by Werner and the second author [16].

In the general case the natural enumeration for which the smallest eigenvalue is
the first one, the second smallest is the second one, etc. is not appropriate, but the
number of an eigenvalue λ of the nonlinear problem (2.1) is inherited from the number
of the eigenvalue 0 of the matrix T (λ).

If λ ∈ J is an eigenvalue of problem (2.1) then µ = 0 is an eigenvalue of the linear
problem T (λ)y = µy, and therefore there exists k ∈ N such that

0 = max
W∈Sk

min
w∈W1

wHT (λ)w

where Sk denotes the set of all k–dimensional subspaces of Cn and W1 := {w ∈ W :
‖w‖ = 1} is the unit sphere in W . In this case we call λ a k-th eigenvalue of (2.1).

With this enumeration the following minmax characterization of the eigenvalues
of the nonlinear eigenproblem (2.1) was proved in [16]:
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Theorem 2.1. For every x 6= 0 let the real equation (2.2) have at most one
solution p(x) ∈ J , and assume that

xHT ′(p(x))x > 0 for every x ∈ D.

Then the following assertions hold:
(i) For every k ∈ N there is at most one k-th eigenvalue of problem (2.1) which

can be characterized by

λk = min
W∈Sk,
W∩D 6=∅

sup
w∈W∩D

p(w). (2.3)

Hence, there are at most n eigenvalues of (2.1) in J .
(ii) If λ ∈ J and k ∈ N such that (2.1) has a k-th eigenvalue λk ∈ J . Then it

holds

λ





>
=
<



λk ⇐⇒ µk(λ) := max

W∈Sk
min
w∈W1

wHT (λ)w





>
=
<



 0.

The correspondence between a k-th eigenvalue λk of T (·) and the k largest eigen-
value of the matrix T (λk) suggests the safeguarded iteration for computing the k-th
eigenvalue of a nonlinear problem given in Algorithm 1. Its convergence properties
were proved in [15], and are collected in Theorem 2.2.

Algorithm 1 Safeguarded iteration

1: Start with an approximation µ1 to the k-th eigenvalue of (2.1)
2: for ` = 1, 2, . . . until convergence do
3: determine eigenvector x corresponding to the k largest eigenvalue of T (µ`)
4: evaluate µ`+1 = p(x)
5: end for

Theorem 2.2.
(i) If λ1 := infx∈D p(x) ∈ J , and if λ1 is a simple eigenvalue of (2.1), then the

safeguarded iteration converges globally and quadratically to λ1.
(ii) If λk ∈ J is a k-th eigenvalue of (2.1) which is simple then the safeguarded

iteration converges locally and quadratically to λk.
(iii) If T (λ) is positive definite for λ ∈ J and x in step 3. of Algorithm 1 is

chosen to be an eigenvector corresponding to the k largest eigenvalue of the
generalized eigenproblem T (µ`)x = κT ′(µ`)x then the convergence is even
cubic.

The safeguarded iteration is definitely not capable to solve large nonlinear eigen-
value problems. However, as an inner iteration in a projection method it is well suited
since its convergence properties and for small dimension its complexity are similar to
those of inverse iteration. As an advantage upon inverse iteration it aims at an eigen-
value with a specific number, and therefore it is less likely to miss an eigenvalue if one
is interest in all eigenvalues in an interval.

3. Iterative projection methods for nonlinear eigenproblems. For sparse
linear eigenvalue problems

Ax = λx (3.1)
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iterative projection methods are very efficient. Here the dimension of the eigenprob-
lem is reduced by projecting it to a subspace of much smaller dimension, and the
reduced problem is handled by a fast technique for dense problems. The subspaces
are expanded in the course of the algorithm in an iterative way with the aim that
some of the eigenvalues of the reduced matrix become good approximations to some
of the wanted eigenvalues of the given large matrix. Prominent representatives of this
type are the Lanczos, Arnoldi, rational Krylov, and Jacobi–Davidson methods.

Generalizations to nonlinear eigenproblems are discussed in [1, 5, 10, 11, 12,
13, 14, 15]. A typical example is the nonlinear Arnoldi method in Algorithm 2,
where we assume that problem (1.2) is symmetric, and the eigenvalues can be enu-
merated according to Section 2, and we are interested in computing the eigenvalues
λmmin

, . . . , λmmax .

Algorithm 2 Nonlinear Arnoldi Method

1: start with an initial shift σ and an initial basis V , V HV = I ;
2: determine preconditioner M ≈ T (σ)−1, σ close to first wanted eigenvalue
3: for m = mmin, . . . ,mmax do
4: compute m smallest eigenvalue µ and corresponding eigenvector y of the pro-

jected problem TV (µ)y := V HT (µ)V y = 0 by safeguarded iteration
5: determine Ritz vector u = V y and residual rk = T (µ)u
6: if ‖rk‖/‖u‖ < ε then
7: accept approximate eigenpair λm = µ, xm = u,
8: choose new shift σ and determine preconditioner M ≈ T (σ)−1 if indicated
9: restart if necessary

10: choose approximations µ and u to next eigenvalue and eigenvector
11: determine residual r = T (µ)u
12: end if
13: v = Mr
14: v = v − V V Hv, ṽ = v/‖v‖, V = [V, ṽ]
15: reorthogonalize if necessary
16: update projected problem TV (µ) = V HT (µ)V
17: end for

Applying Algorithm 2 to the linear eigenproblem T (λ) = λB−A and choosing the
preconditioner M = (σB − A)−1 the method is nothing else but the shift-and-invert
Arnoldi method. This motivates the name nonlinear Arnoldi method despite the
fact that differently from the linear case no Krylov space and no Arnoldi recursion
is determined in the course of the algorithm. Similarly as in the Jacobi–Davidson
method for linear problems the underlying idea is to expand the search space by a
direction which has a high approximation potential for the eigenvector wanted next,
namely the improvement by the residual inverse iteration [8].

There are many details that have to be considered when implementing the Arnoldi
method according to Algorithm 2 concerning the choice of the initial basis, solving
the projected problem, when to change and how to choose the preconditioner, when
and how to restart, and how to continue after an eigenpair was accepted. A detailed
discussion is contained in [12, 13]. Here we concentrate on the start and restarts for
symmetric problems allowing a minmax characterization of their eigenvalues.

A crucial point in iterative projection methods for general nonlinear eigenvalue
problems when approximating more than one eigenvalue is to inhibit the method from
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converging to the same eigenvalue repeatedly. In the linear case this is no problem.
Krylov subspace solvers construct an orthogonal basis of the ansatz space not aiming
at a particular eigenvalue, and one gets approximations to extreme eigenvalues without
replication (at least if reorthogonalization is employed). If several eigenvalues are
computed by the Jacobi–Davidson method then one determines an incomplete Schur
factorization thus preventing the method from approaching an eigenvalue which was
already obtained previously (cf. [4]). For nonlinear problems a similar normal form
does not exist.

If T (λ) is a family of symmetric matrices allowing a minmax characterization of
its eigenvalues in an open interval J , and if the columns of V ∈ Cn form a basis of
the current search space V of Cn, then it is easily seen that the projected problem

TV (λ)y := V HT (λ)V y = 0 (3.2)

inherits this property, i.e. its eigenvalues in J are minmax values of the restriction of
the Rayleigh functional p of T (·) to D ∩V , although in general the numeration of the
eigenvalues of the original problem and the projected problem will differ.

If J contains a first eigenvalue λ1 = minx∈D p(x), then by Theorem 2.2 the
safeguarded iteration for (3.2) converges globally for any initial vector x ∈ V ∩D to
the smallest eigenvalue of (3.2). If xj denotes an eigenvector corresponding to the j-th
eigenvalue λj of (1.2), and if xj ∈ V for j = 1, . . . , k, then λj is a j-th eigenvalue of the
projected problem (3.2), as well. Hence, expanding the search space V iteratively, and
determining the (k + 1)-th eigenvalue of the projected problems, one gets a sequence
of upper bounds of λk+1 which (hopefully) converges to λk+1. Thus, the eigenvalues
of (1.2) can be determined one after the other by the Nonlinear Arnoldi algorithm
starting with an approximation to x1.

As the subspaces expand in the course of the algorithm the increasing storage
or the computational cost for solving the projected eigenvalue problems may make it
necessary to restart the algorithm and purge some of the basis vectors. Restarting
with a subspace V which contains the already converged eigenvectors x1, . . . , xk then
obviously keeps the numeration of the eigenvalues, and we can continue as above to
determine the subsequent eigenpairs. Notice that we only restart if an eigenvector has
just converged since a restart destroys information on the eigenvectors and particularly
on the one the method is just aiming at.

If λ1 = infx∈D p(x) 6∈ J we can modify this approach in the following way. The
proof of the minmax characterization (2.3) in [16] shows that the minimum is attained
by the invariant subspace W of T (λk) spanned by the eigenvectors corresponding to
its k largest eigenvalues. Hence, if the current search space V satisfies W ⊂ V then it
is easily seen that the k-th eigenvalue of the projected problem (3.2) is λk, i.e. again
the numeration of the eigenvalues is not altered in the projected problem, and the
eigenvalues can be determined successively.

4. A local restart technique. The Nonlinear Arnoldi Method as described
in the last section hits its limitations if a large number of eigenvalues (or a set of
some subsequent eigenvalues in the interior of the spectrum) is required. In order to
preserve the numbering the dimension of the search space has to be at least as large
as the number of eigenvalues in J preceding the sought one. Therefore the size of
the projected problem is growing with the number of the wanted eigenvalue, which
results in increasing time consumed by the nonlinear solver and increasing storage
requirement.



A LOCAL RESTART PROCEDURE FOR NONLINEAR EIGENPROBLEMS 217

Algorithm 3 Restart framework

Require: Preconditioner M ≈ T (σ)−1 for a suitable pole σ,
Require: (λi, xi) an (approximate) eigenpair of T (·)
Require: v1 an approximation to xi+1

1: V = [xi, v1];
2: j = 1;
3: while Restart condition not satisfied do
4: repeat
5: Determine largest eigenvalues µ1(λi) ≥ · · · ≥ µk(λi) > 0 ≥ µk+1(λi) of (4.2)
6: Set ` := k if µk ≤ −µk+1, and else ` := k + 1
7: Compute (`+ j)-th eigenpair (λ̃`+j , y`+j) of TV (·)
8: Expand V = [V,MT (λ̃`+j)V y`+j ]

9: until Eigenpair (λ̃`+j , V yl+j) =: (λi+j , xi+j) converged
10: j = j+1;
11: end while

We propose a way to overcome this difficulty by introducing a local numbering,
which does not require to include the entire set of preceding eigenvectors or the
invariant subspace of T (λk) mentioned in the last paragraph of Section 3 into the
search subspace after a restart.

Assume that we are given an eigenvalue λ̂ ∈ J of the nonlinear eigenproblem (1.2),
which we call an anchor, and a corresponding eigenvector x̂. Let V be a subspace of
Cn that contains x̂, and let the columns of V form a basis of V .

Then λ̂ is also an eigenvalue of the projected problem

TV (λ̂) := V HT (λ̂)V y = 0, (4.1)

and since TV (·) satisfies the conditions of Theorem 2.1 we can assign to λ̂ a local

number ` = `(V) in the following way: λ̂ is an `-th eigenvalue of problem (4.1) if

µ(λ̂) = 0 is the ` largest eigenvalue of the linear problem

V HT (λ̂)V y = µ(λ̂)y. (4.2)

Starting with V =: V0 we determine approximations to the eigenvalue subsequent to
the anchor λ̂ projecting problem (1.2) to a sequence of subspaces V0 ⊂ V1 ⊂ V2 ⊂ . . .
which are expanded in the same way as in Algorithm 2 aiming at the (`(Vk) + 1)-th
eigenvalue in the k-th iteration step. Notice that the number `(Vk) of the anchor may
change in the course of the algorithm.

After convergence we may continue the Nonlinear Arnoldi method aiming at the
(`(Vk) + 2)-th eigenvalue or we may replace the anchor by the newly converged eigen-
pair. Since the current search space contains useful information about further eigen-
values it is advisable to continue expanding the search spaces until the convergence
has become too slow or the dimension exceeds a given bound.

Once we have the local numbering there is no necessity any more to include
all the eigenvectors corresponding to the preceding eigenvalues in J or the invariant
subspace of T (λ̂) corresponding to its nonnegative eigenvalues into the search space
after a restart. All that we need to set up the new search subspace is an eigenvector
x̂ corresponding to an anchor λ̂ and an approximation v1 to the next eigenvector (or
a random vector if such an approximation is not at hand). This leads to the restart
framework in Algorithm 3.
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Some comments are in order.
1. In practice the search subspace V usually contains an approximation rather

than the exact eigenvector, thus we assign the number ` of the eigenvalue
µ(λi) of the linear problem (4.2) with minimal absolute value to the anchor
λi.

2. It may happen that the algorithm converges to an eigenvalue twice, i.e. it
returns λi < λi+1 < · · · < λi+k ≈ λi+k+1 for some k ≥ 1.
If the angle between the eigenvectors xi+k and xi+k+1 is different from 0 or
if λi+k is the (`+ k)-th eigenvalue of the projected problem

Ṽ HT (λ)Ṽ y = 0

where Ṽ denotes a basis of the orthogonal complement of xi+k+1 in V , then
λi+k is a multiple (at least a double) eigenvalue, and we continue Algorithm 3
to compute the (i+ k + 2)-th eigenvalue.
If in this way λi+k is not shown to be a double eigenvalue, then for the current
search space V the projected problem (4.1) possesses an additional eigenvalue
θ ∈ (λi, λi+k) such that θ 6= λi+j for j = 0, . . . , k. Therefore the local number
of λi+k is raised by 1, and λi+k is accepted as an (i + k + 1)-th eigenvalue.
This may have happened for one of the following two reasons:
First, an eigenvalue of (1.2) in the interval (λi, λi+k) might have been missed
out because the corresponding eigenvector x̂ were not sufficiently present
in the initial search space span{xi, v1} and might have not been amplified
sufficiently in the course of the expansions of V until computing λi+k . After-
wards the component of x̂ in the search space V was increased and became
big enough to produce the additional eigenvalue approximation θ ∈ (λi, λi+k),
and Algorithm 3 yielded the eigenvalue approximation λi+k the second time.
Secondly, it might be the case that no eigenvalue of (1.2) is missing in
(λi, λi+k) but the newly produced eigenvalue of the projected problem (4.1)
is a linear combination of eigenvectors of (1.2) corresponding to eigenvalues
less than λi and of eigenvectors corresponding to eigenvalues greater than
λi+k .
In both cases we determine the additional eigenvalue θ and its local num-
ber ` + j, and we expand the search space V̂ = span{V ,MT (θ)xθ} by the
direction of residual inverse iteration at (θ, xθ), where xθ denotes the Ritz
vector corresponding to θ. Then by the minmax principle all eigenvalues of
the projected problem

TV̂ (λ)ŷ = 0 (4.3)

are less than or equal to the corresponding ones of TV (λ)y = 0, and either
problem (4.3) has exactly k + 1 eigenvalues λi, . . . , λi+k ∈ [λi, λi+k] (i.e.
the additional eigenvalue has left the interval of interest) or there are k + 2

eigenvalues λi, . . . , λi+k , θ̂ ∈ [λi, λi+k ], and it holds θ̂ ≤ θ.
In the latter case we repeat the expansion by residual inverse iteration until
the sequence of additional eigenvalues in [λi, λi+k ] has been moved out of the
interval or has converged to an additional eigenvalues. We then adjust the
numeration of the eigenvalues and continue the Arnoldi method.

3. Notice that more than one additional eigenvalue may exist in [λi, λi+k ] after
we detected a replicate eigenvalue. They all can be treated in the same way
as in the last item one after the other.
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5. Numerical experiments. To evaluate the local restart technique we con-
sider the conservative gyroscopic eigenvalue problem (1.1). It is well known that all
eigenvalues are real and occur in pairs ±λ, that the corresponding eigenvectors are
complex conjugate, and that the positive eigenvalues 0 < λ1 ≤ · · · ≤ λn satisfy the
minmax characterization [3]

λi = min
W∈Si

max
w∈W

p(w),

where p(x) is the positive solution of the quadratic equation

xHT (λ)x = −λ2xHMx+ iλxHGx+ xHKx = 0.

We consider a coarse finite element model of a rotating wheel of dimension 1728.
To demonstrate the efficiency of the local restart technique we compute the eigenval-
ues λ101, . . . , λ200 and the associated eigenvectors. This corresponds to the interval
[11780, 16820].

All the tests were run under MATLAB 7 on a 3.2 GHz Intel Xeon Processor with
2 GB RAM. The results are uniformly presented in terms of elapsed CPU times. We
preconditioned the Arnoldi method by the LU factorization of K−σ2M where σ is a
shift not too far away from the wanted eigenvalues. We updated the LU factorization
when the quotient of the last two residual norms before convergence of an eigenvalue
exceeded a given threshold τ indicating that the convergence has become too slow.

In our first experiment, we computed all eigenpairs for positive eigenvalues less
than 16820 by the Arnoldi method with safeguarded iteration without restart ending
up with a search subspace of dimension 694. The total computing time was 3957
seconds, 3771 seconds of which were consumed solving the nonlinear projected eigen-
problems.

To prevent the search subspace from getting arbitrarily large we restricted its
dimension to 230 in our second experiment. We restarted the Arnoldi method with
an orthonormal basis of the subspace spanned by the eigenvectors computed so far,
every time when the subspace dimension exceeded this bound. This reduced the total
computing time to 479 seconds, where 323 seconds were spent on solving the nonlinear
projected problems.

In the third experiment we used the same restart technique, but this time the
restarts were triggered whenever the dimension of the subspace exceeded the number
of a currently converged eigenvalue by more than 30. This reduced the total computing
time further to 347 seconds and 174 seconds for the nonlinear solver. Figure 5.1 shows
the total computing time and the time consumed for solving the projected nonlinear
problems indicating that the superlinear growth of the total CPU time is mainly
caused by the solver of the projected eigenproblems.

Computing the smallest 200 eigenvalues with the local strategy from Section 4
restarting whenever the search space dimension exceeded 60 or when the convergence
rate τ goes beyond 0.3 it took 199 seconds to compute all eigenvalues, where only 49
seconds were spent on solving the nonlinear problems. The elapsed computing times
are shown in Figure 5.2.

The outstanding advantage of the local strategy is the fact that we do not have
to determine the leading eigenpairs if we are only interested in eigenvalues in a given
interval. All that we need is an anchor which can be determined by residual inverse
iteration with a shift close to the left bound. This way the total computing time was
reduced further to 102 seconds, while 21.7 seconds was consumed by the nonlinear
solver, for computing all eigenvalues in [11780, 16820].
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Fig. 5.1. CPU time consumption for global restarts

Bearing in mind that for large problems the setup time for a restart, i.e. the cost
for determining the preconditioner and generating the new search space and the pro-
jected problem, can be relatively high in comparison to the remaining computations,
we can further improve the performance admitting the algorithm to balance these
expenses automatically.

Let tr denote the setup time of a restart, and let tie be the time needed for
computing the i-th eigenvalue of problem (1.2), where i denotes the local number
after the restart. Then the total time for computing the first i eigenvalues is tit = tr +∑i

j=1 t
j
e, and the average time for computing one eigenvalue in this loop is t̄ie = tit/i.

Let α ≥ 1 and Nv ∈ N0 be parameters depending on the given problem, and let
nv = Nv. We adjust nv after a restart in the i-th step in the following way

nv ←
{

min{Nv, nv + 1} if tie ≤ α · t̄ie
nv − 1 else

and we restart the method again if nv < 0. Hence, we do not allow too often that
the time required for convergence to an eigenvalue is bigger than the average time for
convergence including the setup time. In particular, if Nv = 0 and α = 1 we restart
the algorithm straightaway when the time for convergence to an eigenvalue is bigger
than the average time for computing the previous eigenvalues since the last restart.

With α = 1 and Nv = 0 this restart strategy reduced the total time for computing
all eigenvalues in [11780, 16820] to 81.5 seconds with 5.4 seconds only spent on solving
all projected nonlinear eigenproblems. The elapsed computation times are pictured
in Figure 5.3.

The plots in Figures 5.2 and 5.3 show that the cost for computing one eigenvalue
is approximately the same, no matter what its number is. Thus the new restart
technique effectively eliminates the superlinear growth with the number of eigenvalues
and constitutes an efficient method for computing eigenvalues in the interior of the
spectrum.
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Fig. 5.2. Local restarts
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