
Proceedings of ALGORITMY 2005
pp. 202–211

PRECONDITIONING IN THE PARALLEL
BLOCK-JACOBI SVD ALGORITHM ∗

GABRIEL OKŠA † AND MARIÁN VAJTERŠIC ‡

Abstract. One way, how to speed up the computation of the singular value decomposition
of a given matrix A ∈ Cm×n, m ≥ n, by the parallel two-sided block-Jacobi method, consists of
applying some pre-processing steps that would concentrate the Frobenius norm near the diagonal.
Such a concentration should hopefully lead to fewer outer parallel iteration steps needed for the
convergence of the entire algorithm. It is shown experimentally, that the QR factorization with the
complete column pivoting, optionally followed by the LQ factorization of the R-factor, can lead to
a substantial decrease of the number of outer parallel iteration steps, whereby the details depend
on the condition number and the form of spectrum. However, the gain in speed, as measured by
the total parallel execution time, depends decisively on how efficient is the implementation of the
distributed QR and LQ factorizations on a given parallel architecture.

Key words. QR factorization with column pivoting, LQ factorization, singular value decom-
position, two-sided block-Jacobi method, parallel computation, message passing interface, cluster of
personal computers

AMS subject classifications. 15A18, 15A23, 68W10

1. Introduction. The two-sided serial Jacobi method is a numerically reli-
able algorithm for the computation of the eigenvalue/singular value decomposition
(EVD/SVD) of a general matrix A ∈ Cm×n, m ≥ n [1]. For certain classes of ma-
trices [4], it can achieve the high relative accuracy in computing the tiniest singular
values (or eigenvalues), which is of great importance in such applications as quantum
physics or chemistry.

Unfortunately, the serial Jacobi method – and especially its two-sided variant
– belongs to the slowest known algorithms for computing the EVD/SVD. Our ex-
periments have shown that the dynamic parallel ordering, which was proposed and
implemented in [2], typically reduces the number of outer parallel iteration steps in the
two-sided block-Jacobi algorithm by 30 – 40 per cent for random, dense matrices of
orders 2000 – 10000. In general, however, this is not enough to make the method com-
petitive with faster (albeit less accurate) algorithms based on the bi-diagonalization.

One way, how to further decrease the number of outer parallel iteration steps, can
be based on applying an appropriate preconditioner to the original matrix A at the
beginning of iteration process. Ideally, such a preconditioner should concentrate the
Frobenius norm of A towards diagonal as much as possible. Notice that if A were a
block-diagonal matrix, and if its partition covered all diagonal blocks, only one outer
parallel iteration step would be required for the whole SVD computation. Hence, it is
hoped for that the concentration of the Frobenius norm towards the diagonal might
decrease the number of outer iteration steps substantially.

In the serial case, the idea of a preconditioner was proposed and tested by Drmač
and Veselić in [5]. Their preconditioner consists of the QR factorization (QRF) with

∗This work was supported by VEGA Grant no. 2/4136/24 from the Scientific Grant Agency of
Slovak Republic and Slovak Academy of Sciences.
†Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava,

Slovak Republic ((Gabriel.Oksa, Marian.Vajtersic)@savba.sk)
‡Institute for Scientific Computing, University of Salzburg, Salzburg, Austria

202

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 203

the complete column pivoting (CP), optionally followed by the LQ factorization (LQF)
of the R-factor. Both these methods help to concentrate the Frobenius norm towards
the diagonal.

We extend the idea of a serial preconditioner to the parallel case. We show that its
combination with dynamic ordering can lead to a substantial decrease of the number
of parallel iteration steps, at least for certain matrices. The best results were achieved
for well-conditioned matrices with a multiple minimal singular value.

The paper is organized as follows. In Section 2 we briefly introduce the paral-
lel two-sided block-Jacobi SVD algorithm with the dynamic ordering. Section 3 is
devoted to the variants of the pre- and post-processing based on the QRF with CP,
optionally followed by the LQF of the R-factor. Experimental results on a cluster of
personal computers (PCs) are described in Section 4. Finally, Section 5 summarizes
achieved results and proposes lines for further research.

2. Parallel algorithm with dynamic ordering. For the sake of consistency,
we briefly mention basic constituents of the parallel two-sided block-Jacobi SVD al-
gorithm with dynamic ordering; details can be found in [2]. The parallel algorithm
for processor me, me = 0, 1, . . . , p− 1, can be written in the form of Algorithm 2.

When using the blocking factor ` = 2p, each processor contains exactly two block
columns of dimensions m× n/` so that `/2 SVD subproblems of block size 2× 2 are
solved in parallel in each iteration step. This tight connection between the number
of processors p and the blocking factor ` can be released (see [3]). However, our
experiments have shown that using ` = 2p ensures the least total parallel execution
time in most cases.

The procedure ReOrderingComp (Algorithm 2, step 6) computes the optimal re-
ordering destinations of all block columns residing in a given processor (dest1 and
dest2) and their locations at new position (tag1 and tag2). The so-called dynamic
reordering is based on the maximum-weight perfect matching that operates on the
`× ` updated weight matrix W using the elements of W +W T , where (W +W T)ij =
‖Aij‖2F + ‖Aji‖2F. Details concerning the dynamic ordering can be found in [2]. The
argument tag provides the matching between the corresponding send and receive

calls.
The kernel operation is the SVD of 2× 2 block subproblems

Sij =

(
Aii Aij
Aji Ajj

)
, (2.1)

where, for a given pair (i, j), i, j = 0, 1, . . . , ` − 1, i 6= j, the unitary matrices Xij

and Yij are generated such that the product

XH
ij Sij Yij = Dij

is a block diagonal matrix of the form

Dij =

(
D̂ii 0

0 D̂jj

)
,

where D̂ii and D̂jj are diagonal.
The termination criterion of the entire process is

F (A, `) =

√√√√
l−1∑

i,j=0, i6=j
‖Aij‖2F < ε , ε ≡ prec · ‖A‖F , (2.2)

204 G. OKŠA, M. VAJTERŠIC

Parallel block-Jacobi SVD algorithm with dynamic ordering

1: U = Im
2: V = In
3: (i, j) = (2me, 2me+ 1)
4: while F (A, `) ≥ ε do
5: update(W)
6: ReOrderingComp(i, j,W,me) → dest1 , dest2 , tag1 , tag2
7: copy(Ai, Ui, Vi, i) → Ar, Ur, Vr, r
8: copy(Aj , Uj , Vj , j) → As, Us, Vs, s
9: send(Ar, Ur, Vr, r, dest1 , tag1)

10: send(As, Us, Vs, s, dest2 , tag2)
11: receive(Ai, Ui, Vi, i, 1)
12: receive(Aj, Uj , Vj , j, 2)
13: if F (Sij , `) ≥ δ then
14: . computation of Xij and Yij by SVD of Sij
15: SVD(Sij) → Xij , Yij
16: . update of block columns
17: (Ai, Aj) = (Ai, Aj) · Yij
18: (Ui, Uj) = (Ui, Uj) ·Xij

19: (Vi, Vj) = (Vi, Vj) · Yij
20: else
21: Xij = I(m/p)
22: end if
23: AllGather(Xij, i, j) → XX(t) = (Xrs, r, s), t = 0, 1, . . . , p− 1
24: . update of block rows
25: for t = 0 to p− 1 do

26:

(
Ari Arj
Asi Asj

)
= XH

rs,t ·
(
Ari Arj
Asi Asj

)

27: end for
28: end while

where ε is the required accuracy (measured relatively to the Frobenius norm of the
original matrix A), and prec is a chosen small constant, 0 < prec � 1.

A subproblem (2.1) is solved only if

F (Sij , `) =
√
‖Aij‖2F + ‖Aji‖2F ≥ δ , δ ≡ ε ·

√
2

` (`− 1)
, (2.3)

where δ is a given subproblem accuracy. It is easy to show that if F (Sij , `) < δ for all
i 6= j and δ is as defined, then F (A, `) < ε, i.e., the entire algorithm has converged.

After the embedded SVD is computed (step 15), the matrices Xij and Yij of
local left and right singular vectors, respectively, are used for the local update of
block columns (steps 16–22). In the procedure AllGather (step 23), each processor
sends its matrix Xij to all other processors, so that each processor maintains an array
(denoted by XX) of p matrices. These matrices are needed in the orthogonal updates
of block rows (steps 24–27).

From the implementation point of view, the embedded SVD is computed using
the procedure ZGESVD from the LAPACK library while the matrix multiplications are

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 205

performed by the procedure ZGEMM from the BLAS (Basic Linear Algebra Subrou-
tines). The point-to-point (steps 9–12) as well as collective (step 23) communications
are realized by the Message Passing Interface (MPI).

3. Variants of pre-processing and post-processing.

3.1. QRF with CP. As mentioned above, the main idea of pre-processing is to
concentrate the Frobenius norm of the whole matrix A towards the diagonal. For this
purpose, the QRF with CP is applied to A at the beginning of computation. This
pre-processing step can be written in the form

AP = Q1R, (3.1)

where P ∈ Rn×n is the permutation matrix, Q ∈ Cm×n has unitary columns and
R ∈ Cn×n is upper triangular. Notice that this is a so-called economy-sized QRF
with CP, where only n unitary columns of orthogonal matrix are computed. It follows
from the definition of the complete column pivoting that the upper triangular matrix
R is diagonally dominant, so that its Frobenius form is indeed concentrated near the
diagonal.

In the second step, the SVD of the matrix R is computed by Algorithm 2. Since
R is upper triangular, one could use here some parallel variant of the Kogbetliantz
method, which preserves the upper triangular form through the whole Jacobi process.
However, at this stage, our two-sided block-Jacobi algorithm does not include this
option, and the upper triangular form of R is in general lost after first update of
block rows and block columns. Let us denote the SVD of R by

R = U1ΣV H1 , (3.2)

where U1 ∈ Cn×n and V1 ∈ Cn×n are left and right singular vectors, respectively, and
the diagonal matrix Σ ∈ Rn×n contains n singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
that are the same as those of A.

In the final step, some post-processing is required to obtain the SVD of A, A ≡
UΣV H . Using Eq. (3.2) in Eq. (3.1), one obtains

AP = (Q1U1)ΣV H1 ,

so that

U = Q1U1 and V = PV1. (3.3)

As can be seen from Eq. (3.3), the post-processing step consists essentially of one
distributed matrix multiplication. Here we assume that the permutation of rows of
V1 can be done without a distributed matrix multiplication, e.g., by gathering V1 in
one processor and exchanging its rows according to the permutation P .

3.2. Optional LQF of the R-factor. The second variant of pre- and post-
processing starts with the same first step as above, i.e., with the QRF of A using the
complete CP.

However, in the second step, the LQF of R-factor is computed (without CP), i.e.,

R = LQ2, (3.4)

where L ∈ Cn×n is the lower triangular matrix and Q2 ∈ Cn×n is the unitary matrix.
This step helps to concentrate the Frobenius norm of R towards the diagonal even
more.

206 G. OKŠA, M. VAJTERŠIC

Next, the SVD of L is computed in the third step by our parallel two-sided block-
Jacobi algorithm with dynamic ordering,

L = U2ΣV H2 , (3.5)

and, finally, the SVD of the original matrix A ≡ UΣV H is assembled in the post-
processing step, where

U = Q1U2 and V = P (QH2 V2). (3.6)

Hence, the post-processing consists essentially of two distributed matrix multiplica-
tions.

To illustrate the effect of both steps of pre-processing, Figure 3.1 depicts the
relative block distribution of the Frobenius norm of a random dense matrix A before
and after both pre-processing steps. The QRF with CP and the LQF are clearly able

0
10

20
0

10

20

0

0.2

0
10

20
0

10

20

0

10

Fig. 3.1. Relative block distribution (in per cent) of the Frobenius norm of an original matrix A
(left) and after the QRF with CP + LQF (right). Random matrix A with n = 600, ` = 20, κ = 10,
and with a multiple minimal singular value.

to concentrate more that 80 percent of the Frobenius norm into diagonal blocks.
Figure 3.2 brings the same information as Figure 3.1, but this time for the geo-

metrically distributed singular values. When comparing both figures, it is clearly seen
that the QRF with CP together with the subsequent LQF not only concentrate the
Frobenius norm towards the diagonal, but also reveal the spectral shape of A. This
can be very useful for matrices with their spectra not known a priori.

Clearly, the time and space complexity of the second pre-processing variant is
higher than of the first one. In general, one can expect some trade-off between the

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 207

0
10

20
0

10

20

0

0.1

0.2

0
10

20
0

10

20

0

5

10

Fig. 3.2. Relative block distribution (in per cent) of the Frobenius norm of an original matrix A
(left) and after the QRF with CP + LQF (right). Random matrix A with n = 600, ` = 20, κ = 10,
and with singular values forming the geometric sequence in the interval [10−1, 1], where σ1 = 1 and
σ600 = 10−1.

parallel Jacobi algorithm applied to the original matrix A and to the R (L) factor
after one (two) distributed factorization(s). If the reduction of the number of outer
iteration steps after applying one (two) factorization(s) were not large enough, and
if the computation of one (two) factorization(s) were not very efficient on a given
parallel architecture, it could easily happen that the total parallel execution time
needed for the SVD of A would be higher for variants with pre- and post-processing
than for the Jacobi algorithm applied directly to A. To test the behavior of both
distributed factorizations, we have conducted some numerical experiments that are
described next.

4. Implementation and experimental results. We have implemented three
variants of the parallel two-sided block-Jacobi SVD algorithm on the cluster of PCs
named ‘Gaisberg’ at the University of Salzburg, Salzburg, Austria.

The first variant, denoted by [SVD], simply applies Algorithm 2 to an original
matrix A without any preconditioning. The second method, denoted by [QRCP,
SVD(R)], first computes the QRF with CP of A and then applies Algorithm 2 to
the R-factor. The computation ends by the post-processing according to Eq. (3.3).
Finally, the third variant, denoted by [QRCP, LQ, SVD(L)], computes the QRF with
CP of A, then the LQF (without CP) of the R-factor, and applies Algorithm 2 to the
L-factor that comes out from the final factorization. To get the SVD of an original
matrix A, the post-processing step according to Eq. (3.6) is required.

The cluster of PCs consists of 25 nodes arranged in a 5×5 two-dimensional torus.

208 G. OKŠA, M. VAJTERŠIC

Nodes are connected by the Scalable Coherent Interface (SCI) network; its bandwidth
is 385 MB/s and latency < 4µs. Each node contains 2 GB RAM with two 2.1 GHz
ATHLON 2800+ CPUs, while each CPU contains a two-level cache organized into a
64 kB L1 instruction cache, 64 kB L1 data cache and 512 kB L2 data cache.

All computations were preformed using the IEEE standard double precision float-
ing point arithmetic with the machine precision εM ≈ 1.11× 10−16. By default, the
constant prec = 10−13 was used for the computation of ε and δ (see Eqs. (2.2) and
(2.3)). The number of processors p was variable, p = 4, 8, 24, 40, and depended on
the order n of a (square) test matrix A, which covered the range n = 2000, 4000, 6000
and 8000.

Real matrix elements in all cases were generated randomly using the Gaussian
distribution N(0, 1) with a prescribed condition number κ and a known distribution
of singular values 1 = σ1 ≥ σ2 ≥ · · · ≥ σn = 1/κ. With respect to κ, there were
well-conditioned matrices with κ = 10 and ill-conditioned matrices with κ = 108. In
all cases, the singular values were contained in the closed interval [κ−1, 1], and two
types of their distribution were used. In the first distribution, a matrix had a multiple
minimal singular value with σ1 = 1 and σ2 = σ3 = · · · = σn = κ−1. In the second
case, the singular values were distributed in the form of a geometric sequence with
σ1 = 1 and σn = κ−1 (i.e., all singular values were distinct, but clustered towards
σn).

Numerical computations were performed using standard numerical libraries, ei-
ther from local (LAPACK) or distributed (ScaLAPACK) software packages. In par-
ticular, the QRF with CP and the LQF was implemented by the ScalAPACK’s routine
PDGEQPF and PDGELQF, respectively. Point-to-point and collective communication be-
tween processors was performed using the communication libraries BLACS (Basic
Linear Algebra Communication Subroutines) and MPI.

Experimental results are presented in subsequent tables, the format of which is
common for all of them. The first column contains the order of a (square) matrix while
the second one denotes the number of processors used in an experiment. Afterwards,
the results for individual methods are depicted in the format of two sub-columns per
method. The first sub-column contains the number of parallel iteration steps niter

needed for the convergence at given accuracy, and the second sub-column contains
the total parallel execution time Tp.

We begin with results for well-conditioned matrices with a multiple minimal sin-
gular value, which are summarized in Table 4.1. Its last two columns contain ratios

Table 4.1
Performance for ` = 2p, prec = 10−13 , κ = 10, multiple minimal sing. value.

[SVD] [QRCP, SVD(R)]
n p niter Tp[s] niter Tp[s] [Ratio niter] [Ratio Tp]

2000 4 170 1778.5 3 91.0 56.7 19.5
4000 8 452 6492.5 4 307.7 113.0 21.1
6000 24 1817 5367.6 6 369.3 302.8 14.5
8000 40 3289 7709.9 7 1273.2 469.0 6.1

of niter and Tp for two methods studied – namely, [SVD] and [QRCP, SVD(R)]. The
reduction of niter using the QRF with CP is enormous (two orders of magnitude),
and the value of niter for the [QRCP, SVD(R)] method increases only slowly with an
increasing n. Thus, considering the reduction of niter alone, the QRF with CP plays

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 209

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000

po
rti

on
 o

f t
he

 p
ar

al
le

l e
xe

cu
tio

n
tim

e
[%

]

matrix order

pre-proc.
post-proc.
col-comm

Fig. 4.1. Portion of Tp needed in the pre-processing, post-processing and collective communi-
cation using the [QRCP, SVD(R)] for κ = 10 and the multiple minimal singular value.

the role of an almost ideal preconditioner in this case. It is also clear that employing
the additional LQF of R-factor is not necessary because the QRF with CP has already
reduced niter substantially.

However, savings in Tp are of one order of magnitude less than those in niter. The
reason of this behavior can be deduced from Figure 4.1. For all matrix orders, the
pre-processing step (the QRF with CP) takes more than 30 per cent of Tp, for matrix
orders up to 6000 even more than 50 per cent. This means that the QRF with CP, as
currently implemented in the ScaLAPACK library, is not very efficient (at least for
our cluster of PCs). In other words, the substantial decrease of niter is not sufficient
when another portion of parallel computation is not implemented efficiently.

The portion of Tp spent in collective communication includes the gathering of
matrices U, Σ and V on one processor after finishing the computation. For n = 8000
and the number of processors p = 40 this gathering alone suddenly jumps in time
complexity, so that the whole collective communication takes more than 50 per cent
of Tp. It is possible that the operating system takes another algorithm for gathering
columns of double precision floats of length 8000 than for smaller vectors. On the
other hand, the distributed matrix multiplication needed in the post-processing step is
implemented quite efficiently. Its time complexity actually decreases with the matrix
order, and only about 7 per cent of Tp is needed for its completion for n = 8000.
Similar results regarding the profiling of pre- and post-processing steps were observed
also for other experiments.

Results for ill-conditioned matrices with a multiple minimal singular value are de-
picted in Table 4.2. When compared with well-conditioned matrices (see Table 4.1),
one can conclude that for the [QRCP, SVD(R)] method the number of parallel itera-
tion steps niter depends much more strongly on n. The additional LQF of the R-factor
helps to decrease further the number of parallel iteration steps, but savings in the to-
tal parallel execution time are not proportional due to the large time complexity of
two distributed factorizations during pre-processing.

Finally, we present the results for ill-conditioned matrices in Table 4.3 where the

210 G. OKŠA, M. VAJTERŠIC

Table 4.2
Performance for ` = 2p, prec = 10−13 , κ = 108, multiple minimal sing. value.

[SVD] [QRCP, SVD(R)] [QRCP, LQ, SVD(L)]
n p niter Tp[s] niter Tp[s] niter Tp[s]

2000 4 59 832.9 11 163.5 7 153.1
4000 8 191 3308.8 26 547.9 15 609.8
6000 24 819 2791.8 72 632.6 47 842.9
8000 40 1512 5169.6 125 1811.0 79 1782.5

singular values form the geometric sequence in the interval [10−8, 1] with σ1 = 1 and
σn = 10−8.

Table 4.3
Performance for ` = 2p, prec = 10−13 , κ = 108, geometric sequence of sing. values.

[SVD] [QRCP, SVD(R)] [QRCP, LQ, SVD(L)]
n p niter Tp[s] niter Tp[s] niter Tp[s]

2000 4 44 520.6 43 565.9 19 315.0
4000 8 137 2132.9 114 2042.7 45 1067.2
6000 24 559 1883.4 527 2136.7 154 1186.7
8000 40 1025 3583.9 969 3929.3 260 2034.4

Hence all singular values are distinct, but they are clustered towards σn. Using
the [QRCP, SVD(R)] method in this case leads to the reduction of niter by only 5 – 30
per cent, which is not enough to reduce the total parallel execution time Tp. In fact,
for n = 6000 and n = 8000 the total parallel execution time is even higher than for
the SVD of A alone. Therefore, the application of the [QRCP, LQ, SVD(L)] method
is required to substantially decrease niter. Consequently, Tp is decreased albeit the
savings, as compared to the direct SVD of A, are only around 40 – 50 per cent.

5. Conclusions. When evaluating the preconditioner applied to the computa-
tion of the SVD of a general, dense matrix A by the parallel block-Jacobi algorithm,
one has to consider at least two measures: the number of parallel iteration steps
needed for the convergence at a given accuracy, and the total parallel execution time.
The first measure is more bias-free than the second one, especially when one com-
putes on a parallel system, which is not stand-alone, and uses some vendor’s supplied
numerical and communication libraries as ‘black boxes’.

Our experiments show that the largest savings, both in niter and Tp, as compared
to the simple Jacobi SVD, can be observed for well-conditioned matrices with a mul-
tiple minimal singular value. In this case, the QRF with CP and the subsequent SVD
of R-factor is the method of choice. For ill-conditioned matrices with a geometric dis-
tribution of singular values, the additional pre-processing step (the LQF of R-factor)
is required to substantially reduce niter. Consequently, Tp is also reduced, but only
mildly.

The current main bottleneck of the proposed preconditioning is the high time com-
plexity of the distributed QRF with CP, and of the distributed LQF, as implemented
in the current version of ScaLAPACK. It is an open and interesting question whether
this state of affairs can be improved. We also plan to extend numerical experiments
to the larger matrix dimensions of order 105− 106. However, with the current cluster
of PCs, it will not be possible to gather such huge dense matrices on one processor

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 211

alone anymore. Hence, all preparation, computation and evaluation will have to be
performed in a fully distributed manner.

REFERENCES

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates for the solution
of algebraic eigenvalue problems: A practical guide, First ed., SIAM, Philadelphia, 2000.

[2] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel block-Jacobi SVD
algorithm, Parallel Computing, 28 (2002), pp. 243–262.

[3] M. Bečka and G. Okša, On variable blocking factor in a parallel dynamic block-Jacobi SVD
algorithm, Parallel Computing, 29 (2003), pp. 1153-1174.

[4] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204-1245.

[5] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm, 2004, in preparation.

