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NUMERICAL SOLUTION OF CONTAMINANT TRANSPORT
PROBLEMS WITH NON-EQUILIBRIUM ADSORPTION IN 2D

MARIANA REMEŠ́ıKOVÁ∗

Abstract. In this paper, an efficient operator splitting scheme for solving 2D convection-
diffusion problems with adsorption is introduced. Particularly, we consider a practical problem
of soil parameters identification using dual-well tests. We use a general mathematical model includ-
ing contaminant transport, mechanical dispersion and molecular diffusion and adsorption in both
equilibrium and non-equilibrium modes. First, the original half-plane domain is transformed to a
rectangle using a bipolar orthogonal transformation. Then in each time step we solve separately
the transport, dispersion and adsorption parts. Due to the transformation, the transport problem
(linear or non-linear) is reduced to 1D and can be solved in an analytical form. The dispersion part
is solved using standard finite volume method. For the system of ODE’s representing adsorption we
derive an implicit scheme.
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1. Introduction. Groundwater contamination is one of the most typical hydro-
geological and environmental problems. The general model of a groundwater layer
includes various hydrogeological processes as contaminant transport, mechanical dis-
persion, molecular diffusion, sorption, chemical reactions etc. In many practical situ-
ations we need to predict the time behaviour of a contaminated groundwater layer. In
order to obtain realistic results, it’s necessary to have realistic data in the mathemat-
ical model. Various soil parameters (porosity, dispersivities, sorption coefficients etc.)
can be precisely determined using systems of monitor wells, where by monitoring the
contaminant concentration in the wells it’s possible to reconstruct the groundwater
layer properties. Solving of such inverse problems requires repeated solving of direct
problems and therefore it’s crucial to have an efficient numerical method for the direct
problem.

In this paper we consider a system of two monitor wells and a mathematical
model including contaminant transport, dispersion and adsorption. If we use Dupuit-
Forchheimer approximation, we have a 2D convection-diffusion-adsorption problem.
In e.g. [3], the authors describe an efficient method for solving problems with adsorp-
tion in equilibrium mode. The main goal of this paper is to introduce a method also
for non-equilibrium sorption problems, based on a similar idea.

2. Mathematical model. Let us consider two wells (injection and extraction
well) situated at points (−d, 0) and (d, 0) in Cartesian coordinates, with given radii
r1, r2. Moreover, let us assume that the pumping rate of the injection well is equal to
the discharge in the extraction well. The contaminant transport problem with disper-
sion and adsorption (reaction) is represented by the following system of differential
equations
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heff∂t(C + Ψe(C)) − div(Dheff∇C)− div(heff~vC) + heff∂tS = 0

∂tS = K(Ψn(C)− S)

where ((x, y), t) ∈ Ω× < 0, T >, C(x, y, t) represents the contaminant concentration
and S(x, y, t) is the concentration of adsorbed pollution. We consider the adsorption in
both equilibrium mode (represented by sorption isotherm Ψe(C)) and non-equilibrium
mode (represented by Ψn(C)). Both isotherms are considered to be of Freundlich type,
Ψ(C) = ACp, A > 0, 0 < p < 1. Here D is the dispersivity tensor

Dij =

{
(D0 + αT |v|)δij +

vivj
|v| (αL − αT )

}

where D0 is the molecular diffusion coefficient and δij the Kronecker symbol. αL and
αT are longitudinal and transversal dispersivities. ~v is defined by

~v = − 1

heffθ0
∇Φ

where θ0 is porosity, Φ is the flow potential and heff is the groundwater acquifer
height (if we consider saturated layer) or piezometric head (for unconfined zone).

As the original two-dimensional domain Ω is symmetric along x-axis, we can
restrict ourselves only to one of its half-planes. Using a bipolar transformation, this
domain can be transformed to a rectangle ΩR = (0, π) × (v(1), v(2)) (sides u = 0,
u = π corresponding to well borders), where the equipotential curves and streamlines
of the flow are parallel to coordinate axes and orthogonal to each other (see [1]). The
bipolar coordinates (u, v) are defined by

x =
δ

2

sinh v

cosh v − cosu
, y =

δ

2

sinu

cosh v − cosu
,

√
r2
1 +

1

4
δ2 +

√
r2
2 +

1

4
δ2 = 2d(2.1)

The values v(1), v(2) are obtained from

sinh v(1) = − δ

2r1
, sinh v(2) =

δ

2r2
(2.2)

Applying the transformation described above to the problem in (x, y) coordinates,
we obtain the following convection-diffusion-adsorption problem in (u, v) coordinates

∂t(C + Ψe(C)) − F∂vC − g(∂u(a∂uC) + ∂v(b∂vC)) + ∂tS = 0(2.3)

∂tS = K(Ψn(C) − S)(2.4)

where (t, (u, v)) ∈< 0, T > ×ΩR. Terms g, a, b and F are known functions depending
on u and v and the soil parameters (αL, αT , D0, θ0 (see [1])). We consider the
boundary conditions

C = C0(t) on Γ1, ∂uC = 0 on Γ2 ∪ Γ4, ∂vC = 0 on Γ3(2.5)

where Γ1 = (0, π) × {v = v(2)}, Γ2 = {0} × (v(1), v(2)), Γ3 = (0, π) × {v = v(1)},
Γ4 = {π} × (v(1), v(2)).

The initial conditions are

C((u, v), 0) = 0, S((u, v), 0) = 0(2.6)
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3. The operator splitting scheme.

3.1. Equilibrium mode problem. In [3], the authors describe a method for
1D problem of the form

∂t(C + Ψ(C)) + v(x)∂xC − ∂x(D(x, t)∂xC) = 0

for (x, t) ∈ (0, L)× (0, T ) with boundary and initial conditions

C(0, t) = C0(t), ∂xC(L, t) = 0, C(x, 0) = C0(x)

Here, Ψ(C) represents adsorption in equilibrium mode.
According to [3], the problem can be solved using operator splitting approach.

We use time discretization t0 = 0, t1, t2 . . . tn−1, tn = T , and then in each time step
we separately solve two parts of the problem corresponding to transport and diffusion,
i.e. first

∂t(φ+ Ψ(φ)) + v(x)∂xφ = 0, t ∈ (tj−1, tj)

with the above inflow boundary condition and with initial condition φ(x, tj−1) = Cj−1.

We denote the solution of this problem by C
1/2
j . Then we continue with the next step

and solve

∂t(φ+ Ψ(φ)) − ∂x(D(x, t)∂xφ) = 0, t ∈ (tj−1, tj)

with initial condition φ(x, tj−1) = C
1/2
j . Finally, the solution of this problem we

denote by Cj (≈ C(x, tj)).

3.2. Non-equilibrium mode problem. The idea mentioned in previous sec-
tion can be extended to problem described in sec. 2, which was done in [4] (for 1D
case). Again, we use time discretization t0 = 0, t1, t2 . . . tn−1, tn = T , and then in each
time step we solve three parts of the problem: transport, dispersion and adsorption
part.

The transport part presents a hyperbolic problem of the form

∂t(φ + Ψe(φ)) − F∂vφ = 0, t ∈ (tj−1, tj), j = 1 . . .m(3.1)

with boundary conditions of the form (2.5) and initial condition φ(u, v, tj−1) = Cj−1.

By C
1/3
j we denote the obtained solution, i.e. C

1/3
j := φ(u, v, tj). Now we solve the

problem (the diffusion part)

∂t(φ+ Ψe(φ)) − g(∂u(a∂uφ) + ∂v(b∂vφ)) = 0, t ∈ (tj−1, tj)(3.2)

with the same boundary conditions and initial condition φ(u, v, tj−1) = C
1/3
j . The

obtained solution is denoted by C
2/3
j .

The last part of the procedure is solving the reaction part represented by the
system

∂t(φ+ Ψe(φ)) + ∂tS = 0(3.3)

∂tS = K(Ψn(φ) − S)(3.4)

with the initial conditions φ(u, v, tj−1) = C
2/3
j , S(u, v, tj−1) = Sj−1.

Finally, we put

Cj := φ(u, v, tj), Sj := S(u, v, tj)

where φ(u, v, tj), S(u, v, tj) represent the solution of (3.3)–(3.4).
For some theoretical results concerning this technique see e.g. [2].



162 M. REMEŠÍKOVÁ

3.3. Linear and non-linear transport problem. When we consider the equi-
librium adsorption to be of Freundlich type as above and the initial profile is piece-
wise constant, the solution of the transport problem can be found in an analyti-
cal form. Let us consider a space discretization of rectangle ΩR with nodes u0 =
0, u1, . . . , um = π, v0 = v(2), v1, . . . , vn = v(1). We shall solve (3.1) in the strip
(ui0−1/2, ui0+1/2)× (v(1), v(2)), with shocks in v0, v3/2, v5/2, . . . , vn−1/2, vn.

In general, F in (3.1) is not a constant but depends on v. Therefore we first use
the transformation

z = G(v) =

∫ v

v(1)

ds

F (s)
(3.5)

and we obtain

∂t(φ̄+ Ψe(φ̄))− ∂zφ̄ = 0, φ̄(z, 0) = φ0(v)(3.6)

First, let us consider the simplest case Ψe(φ) ≡ 0, e.g. no equilibrium adsorption
is present. Then the problem is reduced to linear transport problem

∂tφ̄− ∂zφ̄ = 0

that can be solved easily by shifting the initial profile, i.e.

φ̄(z, t) = φ̄(z + t, 0) = φ0(z + t)

In case Ψe(φ) 6= 0 , (3.6) represents a multiple Riemann problem. It’s possible
to find an analytical solution that consists of acceptable shocks and rarefaction waves
(see e.g. [3]).

Finally we project the solution φ(v, t) to a piecewise constant function on inter-
vals (vj , vj−1), j = 1, . . . , n, which is done by taking averages over (vj , vj−1). This
projection can now be used as input for the diffusion part.

3.4. Dispersion problem. Now we solve the problem

∂t(φ+ Ψe(φ)) − g(∂u(a∂uφ) + ∂v(b∂vφ)) = 0, t ∈ (tj−1, tj)(3.7)

with boundary conditions of the form (2.5) and initial condition φ(u, v, tj−1) = C
1/3
j .

Here we use the standard finite volume method (see [1]) that leads to a system
of equations:

1. In case with linear transport (Ψe ≡ 0) and 1D diffusion the system is linear
and tridiagonal

2. In case with linear transport and 2D diffusion the system is linear, sparse,
symmetric and positive definite, and we use a conjugated gradients method

3. When the transport is nonlinear, we obtain a nonlinear system and we use
Newton method

3.5. Adsorption problem. Here we sketch a method for a system of ODE’s of
the form

∂t(φ+ Ψe(φ)) + ∂tS = 0(3.8)

∂tS = K(Ψn(φ) − S)(3.9)

on < 0, t >, with the initial conditions φ(0) = φ0 (in our case we use C
2/3
j ), S(0) = S0

(we use Sj−1).
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Integrating (3.8), using initial conditions, solving (3.9) in S and substituting for
S we obtain an integral equation

f(φ(t)) + S0e
−Kt +K

∫ t

0

e−K(t−z)Ψn(φ(z)) dz = f(φ0) + S0(3.10)

where f(φ) = Ψe(φ) + φ.

Now we use time discretization 0 = τ0, τ1, . . . , τk−1, τk = t and moreover we apply
a transformation w = Ψn(φ), denoting f(Ψ−1

n (w)) by ϕ(w). Thus we obtain for any
i ≤ k

ϕ(w) = f(φ0) + S0 − S0e
−Kτi −K

i∑

j=1

∫ τj

τj−1

e−K(τi−z)w(z) dz(3.11)

Finally, when we approximate the integrals in (3.11) (see [4]), it is possible to
derive an implicit scheme (with m being the iterative index)

ϕ
(m+1)
i+1 = f(φ0) + S0 − S0e

−Kτi+1 −KIi+1 −Kαi+1,i+1w
(m)
i+1 , m = 0, 1...(3.12)

where wi+1 ≈ w(τi+1), ϕi+1 = ϕ(wi+1) and terms Ii+1(w0, . . . , wi), αi+1,i+1 come
from the approximation of the integrals in (3.11). As the starting value for the implicit

process we take w
(0)
i+1 = wi.

4. Computational aspects of the problem.

4.1. Time discretization. The considered time interval < 0, T > doesn’t have
to be discretized equidistantly. In fact, while solving the transport problem, we deter-
mine the time step at run-time. Though it is theoretically unlimited, we go on with
computation only till the moment when a collision between a rarefaction wave and
a shock in front appears (see [3]). Some limitation is also required by the dispersion
part when Newton method is used.

The adsorption part can represent the source of the most significant time step
limitation. Especially when the adsorption coefficient K is large, it is necessary to
use smaller time steps. Experience shows that this is also the case when there is a big
difference between the powers in equilibrium and non-equilibrium sorption isotherms
Ψe(C) and Ψn(C).

4.2. Solution of the discretized 2D problem. Once the rectangle ΩR is
discretized as described in 3.3, we have two possibilities for solving the 2D problem
on this area. If the dispersion is considered to be a 1D problem (i.e. αT = 0, D0 = 0),
it is more convenient to solve the problem separately in each strip, so that each strip
can use its own time steps. If we have to treat a 2D dispersion problem, we have to
solve the whole problem simultaneously in all strips.

4.3. Time step for the adsorption part. In 3.5 we introduced a scheme for
the adsorption part. This scheme allows us to solve the problem in several time
substeps. Although in many cases it is sufficient to solve the adsorption in a single
(global) time step, in many of the more complicated situations mentioned in 4.1 it
helps to use more substeps for the adsorption (which doesn’t affect the global time
step used for transport and dispersion).
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5. Numerical experiments.
Experiment 1: Comparison with analytical solution and finite differ-

ence scheme in 1D. For a simple 1D problem

∂tC + v(x)∂xC − ∂x(D(x, t)∂xC) + ∂tS = 0

∂tS = K(C − S)

it is possible to construct an analytical solution according to [5] and compare it with
the solution obtained by our numerical scheme. In order to verify the efficiency of
the method, we add also a comparison with the solution obtained by a simple finite
difference scheme, where we put ∂tC ≈ (Cki − Ck−1

i )/τ , ∂xC ≈ (Cki − Cki−1)/h,

∂2
xC ≈ (Cki+1−2Cki +Cki−1)/h2, ∂tS ≈ (Ski −Sk−1

i )/τ , Cki = C(xi, tk), Ski = S(xi, tk).
In this experiment we set v and D constant, v(x) ≡ 1, D(x, t) ≡ 10−4 and we use
boundary condition C0(t) ≡ 1. Sorption parameter K = 6.95. We use time step
τ = 0.1 and space grid step h = 0.1 for both finite difference and operator splitting
schemes. As we can see in fig. 5.1, even with these relatively large time and space
steps, the operator splitting method was able to obtain very precise results, while the
finite difference scheme already suffered from a significant numerical dispersion.
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Fig. 5.1. Comparison of analytical solution (solid line) with solution obtained by operator
splitting scheme (large dots) and finite difference scheme (dotted line) at time levels 10, 30, 50

Experiment 2: Comparison with the solution of an equilibrium mode
problem in 1D. Here we put Ψe(C) = Cp, Ψn(C) = Cq with p = q = 0.75 and
the initial condition is C(x, 0) = 1 for x < 1 and C(x, 0) = 0 otherwise. Boundary
condition is C(0, t) = 0. The method was tested for a wide range of values of the
coefficient K, starting with K = 10−5, when the non-equilibrium adsorption is almost
negligible, and ending with K = 100 which makes the non-equilibrium adsorption
behave as an almost equilibrium mode process. In both cases we have a possibility
to verify the results. For small K the results shouldn’t be very different from the
ones of the equilibrium mode problem. On the other hand, when K is large and we
consider p = q, the solution should be similar to the solution of the problem with
F (u) = u + 2up and no reaction part (again the equilibrium mode problem). The
tests that have been done show that this is true.
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Fig. 5.2. Solutions of the non-equilibrium mode problems for D = 10−1, K = 10−5 and
K = 100, at time levels 0, 2, 6, 10 (solid line) compared with the solutions of the equilibrium mode
problems (dashed line)

Experiment 3: Solution of a 2D problem. Now we take a 2D problem with
two wells situated at points (5, 0) (injection well) and (−5, 0) (extraction well). We
consider both adsorption isotherms of the form Ψ(C) = C0.75, dispersivities αL = 0.1,
αT = 0, molecular diffusion with D0 = 0, sorption coefficient K = 10−5 and K = 1.0.
Boundary condition is of pulse shape form, C0(t) = 1 for t < 2.0 and C0(t) = 0
otherwise. We use a space grid with 80 × 400 grid points and time step τ = 0.04.
The lines in the pictures represent concentration levels (C = 0.05, 0.1 . . ., 1.0) at time
t = 8.0 (fig. 5.3).

Experiment 4: Breakthrough curves
Breakthrough curves represent the discharge of contaminant in the extraction

well. In fig. 5.4 are displayed breakthrough curves (plot of average contaminant
concentration in the extraction well versus time) in time interval < 0, 15 > for various
values of sorption coefficient K. For the other parameters and for space discretization
we use the same data as in Experiment 3.
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Fig. 5.3. Solutions of 2D problems with very slow adsorption (K = 10−5) and faster adsorption
(K = 1.0) after 8 days.
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Fig. 5.4. Breakthrough curves for sorption coefficients K = 10−5, 0.01, 0.1, 0.5, 1.0 and 10.0
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