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BASIC NUMERICAL TESTING OF MIXED HYBRID FE MODEL OF
COMPRESSIBLE FLOW WITH ARTIFICIAL VISCOSITY∗

JAN ŠEMBERA AND JIŘÍ MARYŠKA†

Abstract. The contribution is a follow-up to the paper of the same authors in Algoritmy
2002 Proceedings. It was concerned the numerical model of processes in a combustion engine. This
contribution is devoted to one part of the model - a model of Eulerian compressible flow with artificial
viscosity. The system of Euler, mass balance, and state equations is discretized in time using implicit
finite difference method and in space using mixed hybrid formulation of finite element method. The
artificial viscosity term is included and resulting system is linearized. Trilateral prismatic Raviart-
Thomas finite elements are used. The definition of Raviart-Thomas approximation of weak solution
of the Euler flow is set and results of a couple of numerical tests are presented.

Key words. mixed hybrid finite element method, computational fluid dynamics, artificial
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1. Introduction. In [6], overall review of a model of physical processes in a
combustion engine and a short discussion of calibration of energy production were
done. This contribution concentrates on one part of the model - a mixed hybrid finite
element model of Eulerian compressible flow with artificial viscosity.

The problem of compressible isothermal flow of ideal gas is governed by the mass
balance equation, Euler equation, and equation of state:

∂

∂t
%+ div(%u) = 0,(1.1)

∂

∂t
u + (u · grad)u = −1

%
grad p+ g,(1.2)

p = RT%.(1.3)

They should be held in domain Ω with Lipschitzian boundary Γ in time interval 〈0,∆t〉
with boundary and initial conditions

p = pD on ΓD,(1.4)

u · n = uN on ΓN,(1.5)

u(x) = u0(x) ; x ∈ Ω,(1.6)

p(x) = p0(x) ; x ∈ Ω,(1.7)

where Γ = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, and n is outward unitary normal vector of the
boundary Γ.

2. Isothermal Euler flow model with artificial viscosity. Let us derive
the mixed hybrid weak solution of the problem. We use the technique applied to
another physical problem in e.g. [1], [2], [4], [5]: decomposition of the domain Ω
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into elements, definition of weak solution of system (1.1)–(1.7) on each element and
appending conditions of transmission between neighbouring elements.

For this purpose denote Eh disjuct system of open sets (trilateral prisms - ele-
ments) covering the domain Ω: ∪e∈Eh ē = Ω̄&(∀e, e∗ ∈ Eh)(e 6= e∗ ⇒ e ∩ e∗ = ∅).
Let Γh be the set of points on interelement sides except of the ones, where Dirich-
let boundary condition is prescribed Γh =

⋃
e∈Eh ∂e − ΓD and Jh = {f ; (∃(e, e∗) ∈

Eh ×Eh)(f = ē ∩ ē∗) ∨ (∃e ∈ Eh)(f = ē ∩ Γ)} is set of all element sides.
Further let RTEh be the Raviart-Thomas space and let MEh and MΓh be the

multiplicator spaces:

RTEh = span{we
j ; j ∈ {0, 1, 2, 3, 4}, e ∈ Eh},

MEh = span{Φe; e ∈ Eh},
MΓh = span{ϕf ; f ∈ Jh},

where

we
j (x, y, z) =





kej




x− aej
y − bej
z − cej


 for (x, y, z) ∈ e

0 else

, j = 0, . . . , 4,(2.1)

Φe(x, y, z) =

{
1 for (x, y, z) ∈ e
0 else

,(2.2)

ϕf (x, y, z) =

{
1 for (x, y, z) ∈ f
0 else

,(2.3)

and coefficients kej , a
e
j , b

e
j , c

e
j are defined by requirement of fulfilling the equalities

∫

∂e
j

γ∂ew
e
i · ne = δij , i, j = 0, . . . , 4,(2.4)

where γ∂e is the operator of trace and ∂ej means jth side of element e. We remind that
each trilateral prismatic element e ∈ Eh has 5 sides (they are numbered by index j).

After that we complete the model with a term of “artificial viscosity” estimating
energy transfer due to viscosity. Its form is derived from the form of viscous term
in Raviart-Thomas approximation of Navier-Stokes flow. Its value is modified by
artificial viscosity weight Kη. The following definition contains the resulting form of
problem:

Definition 2.1. We say that the system of functions (fh,uh, ph, %h, λh) ∈
RTEh ×RTEh ×MEh ×MEh ×MΓh is the Raviart-Thomas approximation of weak
solution of mixed hybrid formulation of the Euler isothermal flow problem with artifi-
cial viscosity with artificial viscosity weight Kη, if for all test functions (wh, vh, φh,
ϕh, µh) ∈ RTEh ×RTEh ×MEh ×MEh ×MΓh hold

∑

e∈Eh

[∫

e

(
1

∆t
fh + (fh · grad) uh

)
·wh +Kη

3∑

i=1

∫

e

ηgrad uh,i · grad wh,i−(2.5)

−
∫

e

phdiv wh +

∫

∂e∩Γh

λhγ∂e(wh|e) · ne
]
=
∑

e∈Eh

(
1

∆t

∫

e

%hu(i),h ·wh−

−
∫

∂e∩ΓD

pD,hγ∂e(wh|e) · ne +

∫

e

%hg ·wh

)
,
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∑

e∈Eh

[
−
∫

e

div fhφh −
1

∆t

∫

e

%hφh

]
= − 1

∆t

∑

e∈Eh

∫

e

%(i),hφh,(2.6)

0 =
∑

e∈Eh

∫

e

(RT%h − ph)ϕh,(2.7)

0 =
∑

e∈Eh

∫

e

(%huh − fh) · vh,(2.8)

∑

e∈Eh

(∫

∂e∩ΓN

µhγ∂e(uh|e) · ne −
∫

∂e∩ΓN

σλhµh

)
=
∑

e∈Eh

∫

∂e∩ΓN

(uN,h − σpD,h)µh.(2.9)

Let us remark that new variable function λh was introduced to the model as approx-
imation of pressure trace on Γh.

The system (2.5)–(2.9) can be rewritten in the following block matrix form:




A(~p, ~f) +KηV(~p) B C
BT D 0
CT 0 E






~f
~p
~λ


 =




~r1(~p)
~r2

~r3


 ,

where ~f (dimension 5|Eh|), ~p (dimension |Eh|), and ~λ (dimension |Jh|) are vectors of
interlement fluxes, pressure in elements, and pressure on element sides respectively,
~r1, ~r2, and ~r3 are vectors of right hand sides, and nonlinear term A(~p, ~f) + KηV(~p)
of dimensions 5|Eh| × 5|Eh| is block diagonal with 5× 5 blocks (matrix V(~p) itself is
symmetric), matrix B of dimensions 5|Eh|×|Eh| is block diagonal with 5×1 blocks, C
of dimensions 5|Eh|×|Jh| contains at most two nonzeros in each column, and matrices
D (type |Eh| × |Eh|) and E (type |Jh| × |Jh|) are diagonal.

3. Linearization. The equation (2.5) contains nonlinear terms. Two variants
of linearization derived from linearized implicit method approach [3] were tested. We
call them according to the main difference between resulting linear equation systems
as “symmetric” and “nonsymmetric” linearization.

Symmetric linearization corresponds to substitution of term (u ·grad) u in Euler
equation by the product (u ·grad) ŭ, where ŭ represents a priori estimate of velocity
u, and substitution of pressure in resting nonlinear terms by its a priori estimate
(actual value of it in our computations is specified in algorithm 1). Resulting system
can be rewritten in the block matrix form as follows:




AS(~̆p,
~̆
f) +KηV(~̆p) B C

BT D 0
CT 0 E







~f
~p
~λ


 =




~r1(~̆p)
~r2

~r3


 .(3.1)

Here matrix AS is always symmetric and consequently the whole system matrix is
symmetric.

Nonsymmetric linearization substitutes the term (u · grad) u in Euler equation
by the term (ŭ · grad) u. The linear algebraic system is then written as




AN (~̆p,
~̆
f) +KηV(~̆p) B C
BT D 0
CT 0 E







~f
~p
~λ


 =




~r1(~̆p)
~r2

~r3


 .(3.2)

Here the symmetry of matrix AN and thus the whole system matrix is not guaranteed.
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The system (3.1) or (3.2) is solved using the following iterative process:
Algorithm 1. For k = 0, . . . ,K − 1, we solve the system




A(~̆p
[k]
,
~̆
f

[k]

) +KηV(~̆p
[k]

) B C
BT D 0
CT 0 E







~f [k+1]

~p[k+1]

~λ[k+1]


 =




~r1(~̆p
[k]

)
~r2

~r3


 ,

where A is either AS or AN and ~̆p
[0]

= ~p[0] and
~̆
f

[0]

= ~f [0] represent the initial

conditions. The components of vectors ~̆p
[k+1]

= (p̆e0[k+1], p̆
e1
[k+1], . . . , p̆

e|Eh|
[k+1])

T ,
~̆
f

[k+1]

=

(f̆e0[k+1],0, . . . , f̆
e0
[k+1],4, . . . , f̆

e|Eh|
[k+1],0, . . . , f̆

e|Eh|
[k+1],4)T are defined by

p̆e[k+1] = p̆e[k] + ω(p̄e[k+1] − p̆e[k]), where p̄e[k+1] = p̃e[0] + α(p̃e[k+1] − p̃e[0])

f̆e[k+1],j = f̆e[k],j + ω(f̄e[k+1],j − f̆e[k],j), where f̄e[k+1],j = f̃e[0],j + α(f̃e[k+1],j − f̃e[0],j).

The number of iteration steps K is given by stopping condition

(∀e ∈ Eh)(∀j ∈ {0, . . . , 4})(|p̆e[K] − p̆e[K−1]| ≤ ε & |f̆e[K],j − f̆e[K−1],j | ≤ ε).(3.3)

Definition 3.1. Applying the algorithm 1, we call the triple of vectors ( ~f, ~p, ~λ) =

(~f [K], ~p[K], ~λ[K]), the approximation of solution of Raviart-Thomas approximation of
weak solution of mixed hybrid formulation of the Euler isothermal flow problem.

Further details can be found in [7].
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Fig. 3.1. Region Ω with marked boundary parts ΓN,2 and ΓD and shape of the used discretization
mesh.
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4. First results of artificial viscosity testing. Since the computations are
very expensive in CPU time, we started with the small mesh composed of 12 finite
elements. The domain Ω and partioning of its boundary is following (see Fig. 3.1):

Ω = 〈0; 1〉 × 〈0; 3〉 × 〈0; 1〉,
ΓN,1 = {0; 1}× 〈0; 3〉 × 〈0; 1〉 ∪ 〈0; 1〉 × 〈0; 3〉 × {0; 1} ∪

∪〈0; 1〉 × {0} × 〈0; 0.5) ∪ 〈0; 1〉 × {3} × (0.5; 1〉,
ΓN,2 = 〈0; 1〉 × {0} × 〈0.5; 1〉,

ΓD = 〈0; 1〉 × {3} × 〈0; 0.5〉.

The form of the boundary and initial conditions is:

p = 99990 on ΓD,

u · n = 0 on ΓN,1,

u · n = −0.2 on ΓN,2,

u(0,x) = 0 ; x ∈ Ω,

p(0,x) = 100000 ; x ∈ Ω.

The values of T and R are constant, T = 300, R = 668.8.
Testing was made using two lengths of time step ∆t. The “long time step”

∆t = 500 was applied computing problem in the time interval 〈0, 2000〉 and the
“short time step” ∆t = 0.005 when computing problem on the time interval 〈0; 2〉.

The computations were made with symmetric (3.1) and nonsymmetric (3.2) lin-
earization. Parameters of iterative process were α = 1, ω = 0.4, ε = 10−9.

The computations with artificial viscosity were made with parameters η = 10−3

and Kη = 105, the computations without artificial viscosity correspond to artificial
viscosity weight Kη = 0.

The linear algebraic systems were solved using Gauss elimination method.

Fig. 4.1. Visualization of fluxes between mesh elements in vertical cut of the domain Ω in time
t = 2000 computed using time step ∆t = 500 and symmetric linearization without artificial viscosity
(the scale is about 1000 times larger than in figures 4.2 and 4.3. That is why the boundary fluxes on
ΓN,2 and ΓD are not visible). Unitary normal component of velocity is represented by length about
0.035 mm.

All tests made with long time step ∆t = 500 demonstrated common attributes
of flow field in time t = 2000 (following statements hold relatively to the computer
accuracy): the fluxes through the impermeable part of boundary ΓN,1 are zero, fluxes
through permeable boundary parts ΓN,2 and ΓD have the same size corresponding to
the prescribed boundary condition on ΓN,2 and the same direction coincident with y
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Table 4.1
Comparison of various results of “small mesh” problem.

computation flow field min. /max. pressure number of iterations
symmetric without viscosity Fig. 4.1 99990 / 141613 133/92/71/54
nonsymmetric without viscosity Fig. 4.2 99990 / 99990 49/10/6/2
symmetric with viscosity Fig. 4.3 99996 / 100023 38/8/1/1
nonsymmetric with viscosity Fig. 4.3 99996 / 100023 38/8/1/1

axis. The flow field is conservative (the sum of fluxes through all sides of each element
is zero).

Fig. 4.2. Visualization of fluxes between mesh elements in vertical cut of the domain Ω in
time t = 2000 computed using time step ∆t = 500 and nonsymmetric linearization without artificial
viscosity. Unitary normal component of velocity is represented by length about 35 mm.

The results differed in actual form of flow field, in extreme values of pressure and
in number of iterations before the solution converged (see Tab. 4.1). The last column
of the table contains the information on number of iterations computed in four time
steps in the time interval 〈0; 2000〉.

Let us remark that in figures 4.1–4.6 the size of interelement fluxes is visualised
quite non-standard way. The figures show a vertical cross-section of the mesh (rectan-
gles) and lines orthogonal to faces of rectangles representing fluxes. They are oriented
from the face to direction of flux and their length is proportional to flux amplitude.
The number of flux lines (one or two) does not express any studied quality.

Fig. 4.3. Visualization of fluxes between mesh elements in vertical cut of the domain Ω in time
t = 2000 computed using time step ∆t = 500 and symmetric or nonsymmetric linearization with
artificial viscosity. Unitary normal component of velocity is represented by length about 35 mm.

The results demonstrate that when using long time step (looking for stationary
solution), the artificial viscosity stabilisates the solution. The results of computations
using symmetric and nonsymmetric linearization without artificial viscosity are dom-
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inated (in the first case especially substantially) by vortices. Their form differs in
the demonstrated computations, which implies idea that the vortices are generated
by numerical noise comming from iteration process. Here can be registered the con-
sequence of absence of the energy equation in the model and thus nonrespecting of
energy conservation law. The results of both computations with artificial viscosity
almost do not differ and there do not appear vortices in the flow field. The artificial
viscosity manifests this property as should the real viscosity do.

Fig. 4.4. Visualization of fluxes between mesh elements in vertical cut of the domain Ω in
time t = 2 computed using time step ∆t = 0.005 and nonsymmetric linearization without artificial
viscosity. Unitary normal component of velocity is represented by length about 35 mm.

The results of tests using short time step ∆t = 0.005 show fulfilling of boundary
conditions, i.e. the fluxes through impermeable part of boundary ΓN,1 are zero, the
size of fluxes through permeable boundary ΓN,2 corresponds to boundary conditions.
The results of both computations without artificial viscosity oscillate in the whole
interval 〈0; 2〉 (in each time step the iteration process needs 3 iteration steps to deter-
mine new form of flow field) and differ mutually. The results of both computations
with artificial viscosity steadied in time t = 0.25 and they are identical.

Fig. 4.5. Visualization of fluxes between mesh elements in vertical cut of the domain Ω in time
t = 2 computed using time step ∆t = 0.005 and symmetric linearization without artificial viscosity.
Unitary normal component of velocity is represented by length about 35 mm.

Figures 4.4–4.6 show the interelement fluxes in time t = 2 in various variants of
the computation. The pressure field in both computations without artificial viscosity
is even, in the whole volume pressure is equal to the Dirichlet boundary condition
99990. In both computations with artificial viscosity, the pressure field steadies with
extrema 99996 and 100023.

Also here, the artificial viscosity has stabilising effect similarly to a natural image
of the real viscosity.
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Fig. 4.6. Visualization of fluxes between mesh elements in vertical cut of the domain Ω in time
t = 2 computed using time step ∆t = 0.005 and symmetric and nonsymmetric linearization with
artificial viscosity. Unitary normal component of velocity is represented by length about 35 mm.

Further testing was made on larger mesh with 226 elements discretizing the do-
main Ω = 〈0; 2〉 × 〈0; 2〉 × 〈0; 0.1〉, whose boundary is decomposed as follows (see Fig.
4.7):

ΓN,1 = 〈0; 2〉 × {0; 2}× 〈0; 0.1〉 ∪ 〈0; 2〉 × 〈0; 2〉 × {0; 0.1} ∪
∪{0} × 〈0; 16/9)× 〈0; 0.1〉 ∪ {2} × (2/9; 2〉 × 〈0; 0.1〉,

ΓN,2 = {0} × 〈16/9; 2〉 × 〈0; 0.1〉,
ΓD = {2} × 〈0; 2/9〉 × 〈0; 0.1〉.
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GD

Fig. 4.7. Region Ω with marked boundary parts ΓN,2 and ΓD and used discretization mesh.

The boundary and initial conditions are

p = 99990 on ΓD,

u · n = 0 on ΓN,1,

u · n = −4.5 on ΓN,2,

u(0,x) = 0 ; x ∈ Ω,

p(0,x) = 100000 ; x ∈ Ω.
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The values of T and R are constant: T = 300, R = 668.8.

The problem was solved in time interval 〈0; 0.4〉 using time step ∆t = 0.01 and
symmetric linearization (3.1). Iteration parameters were chosen as α = 0.5, ω = 1,
ε = 5 · 10−5.

Fig. 4.8. Visualization of interelement fluxes in horizontal cut of Ω in time t = 0.34 using
Kη = 107. The lines orthogonal to faces of triangles represent fluxes. They are oriented from the
face to direction of flux and their length is proportional to flux amplitude. The number of flux lines
(one or two) does not express any studied quality.

The linear algebraic equation systems were solved by external iterative solver
based on preconditioned conjugate gradient method.

The size of viscosity was set to η = 10−3. The influence of size of artificial viscosity
weight Kη was observed. The computations were made with artificial viscosity weight
Kη = 0, Kη = 102, Kη = 105, and Kη = 107 (the case Kη = 0 is equivalent to
computation without artificial viscosity).

The results of computations with various sizes of artificial viscosity weight do
not considerably differ in form of flow field. Figure 4.8 shows the flow field in time
t = 0.34 for Kη = 107. There occure initial oscilations of velocity of gas outflow
through ΓD when Kη = 0. Their amplitude decrease as weight Kη increases. Similar
oscilations can be observed in pressure field. Figure 4.9 shows plot of time evolution
of pressure in the center of domain Ω. There is visible the same trend of pressure
evolution with different amplitude of oscilations. Increasing artificial viscosity trend
mutes the oscilations.
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Pressure in the center of the region
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Fig. 4.9. Comparison of time evolution of pressure in point (1;1;0.05) of computations with
different artificial viscosity weights (the results for Kη = 0 and Kη = 102 coincide).

5. Conclusion. The mixed hybrid finite element model of Eulerian compressible
flow with artificial viscosity was defined and the influence of artificial viscosity was
tested on two basic problems. The artificial viscosity demonstrates its stabilizing
effect, especially reduction of spurious vortices in steady solutions and reduction of
ocilations in unsteady problems. These results support the proposed form of artificial
viscosity for mixed hybrid finite elements.

Further study of the proposed model should focus on possibility of calibration of
the artificial viscosity weight for modelling viscous gas flow.
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[6] J. Šembera and J. Maryška, Discussion on numerical modelling of physical processes in a
combustion engine, in Proceedings of ALGORITMY 2002 (Bratislava, Slovakia), K. Mikula
et al., eds., Slovak University of Technology, 2002, pp. 179–186.
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